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Abstract—Performance portability between CPU and 
accelerators is a major challenge for coarse grain parallelized codes. 
Hybrid Fortran offers a new approach in porting for accelerators 
that requires minimal code changes and allows keeping the 
performance of CPU optimized loop structures and storage orders. 
This is achieved through a compile-time code transformation where 
the CPU and accelerator cases are treated separately. Results show 
minimal performance losses compared to the fastest non-portable 
solution on both CPU and GPU. Using this approach, five 
applications have been ported to accelerators, showing minimal or 
no slowdown on CPU while enabling high speedups on GPU. 
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I.  MOTIVATION 
When porting real world HPC applications for accelerators, 

performance portability is often one of the main goals - it is 
imperative that code can be executed on different architectures 
with at least reasonable performance. Achieving this for 
accelerators is a major challenge since their architecture is so 
different from CPUs. 

Often the biggest change is going from coarse-grained 
parallelism (order of 10-100 threads per processor) to fine 
grained parallelism (order of 10’000 - 100’000 threads per 
processor). This is particularly challenging for code that is 
parallelized at a point in the program that is far removed from 
the actual computations. The most prominent examples are 
physical cores for weather and climate models. Our motivation, 
the next generation Japanese weather prediction model 
‚ASUCA‘, contains ~20k lines of code in its physical core - 
parallelized in a single loop. 

The usual approach (using OpenACC / OpenMP for Intel 
MIC) is to privatize such code in the parallel domains in order 
to split up into multiple smaller kernels. This leads to 

1. Substantial performance losses when executing 
this code on CPUs. It is therefore not performance 
portable.  

2. A complete rewrite of the computational code, 
with lots of mechanical work for simply inserting 
additional domains in declarations and accessors. 
This is bug prone and leads to less readable code. 

II. PROPOSAL 
In order to (1) ensure performance portability and (2) 

minimize code portation, we propose the following solution: 

1. Allow both coarse grained and fine-grained 
parallelization in the same codebase through 
directives. This enables optimal parallelization for 
both CPU and accelerator architectures. 

2. Automate the privatization of symbols where 
needed, such that the original code can be kept 
with a low number of dimensions.  

III. METHOD 
Hybrid Fortran[1] is an Open Source preprocessor 

framework and a Fortran language extension developed for the 
task of allowing such hybridized parallelizations as described 
in (2) and transforming such unified codes into standard x86 
Fortran and Accelerator enabled Fortran. So far, OpenMP, 
OpenACC and CUDA Fortran parallelizations are 
implemented. Hybrid Fortran currently supports any data 
parallel code that can be implemented on shared memory 
systems. Storage order is abstracted and can be defined in a 
central location without any changes to array accessors and 
declarations.   

Advantages over pure OpenMP / OpenACC: 

• No manual privatization of callgraph necessary 
(this saves ~20k LOC changes in case of ASUCA) 

• Less overhead on GPU than OpenACC since 
CUDA Fortr 

• an can be used 

• No directive code duplication 

 

 

 

 

 

 



 

IV. PERFORMANCE RESULTS 
Table I gives an overview over the current performance results (details please see the poster). 

TABLE I.  PERFORMANCE RESULTS 

V. CONCLUSION AND FUTURE WORK 
 

The preprocessor framework “Hybrid Fortran” has been 
developed and shown to 

1. be performance portable, 

2. require minimum code changes for porting CPU code 
to accelerators, 

3. be general purpose capable for various data parallel 
problems. 

Until Early 2015 we will extend the ASUCA on Hybrid 
Fortran implementation to include the entire model (Dynamical 
+ Physical Core) and integrate the multi-node parallelization 
using MPI. ASUCA on Hybrid Fortran is expected to become 
production ready and operational in 2015. 
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Performance Characteristics 

Speedup HF on 
6 Core vs. 1 

Core 

Speedup HF on 
GPU vs 6 Core 

Speedup HF on 
GPU vs 1 Core 

1. ASUCA Physical Weather Prediction 
Core (121 Kernels) [2] 

Mixed, Coarse Grain Parallelism 4.47x 3.63x 16.22x 

2. 3D Diffusion (Source on Github) [1] Memory Bandwidth Bound, Fine 
Grained Parallelism 1.06x 10.94x 11.66x 

3. Particle Push (Source on Github) [1] Computationally Bound, Sine/Cosine 
operations,  Fine Grained Parallelism 9.08x 21.72x 152.79x 

4. Poisson on FEM Solver with Jacobi 
Approximation (Source on Github) [1] 

Memory Bandwidth Bound, Fine 
Grained Parallelism 1.41x 5.13x 7.28x 

5. MIDACO Ant Colony Solver with 
MINLP Example (Source on Github) 
[1] [3] 

Computationally Bound, Divisions, 
Coarse Grain Parallelism 5.26x 10.07x 52.99x 


