
Performance Portable Parallel Programming
Compile-Time Defined Parallelization and Storage Order for Accelerators and CPUs

Michel Müller
Tokyo Institute of Technology

Global Scientific Information and Computing Center
Aoki Laboratory

Abstract—Performance portability between CPU and
accelerators is a major challenge for coarse grain parallelized codes.
Hybrid Fortran offers a new approach in porting for accelerators
that requires minimal code changes and allows keeping the
performance of CPU optimized loop structures and storage orders.
This is achieved through a compile-time code transformation where
the CPU and accelerator cases are treated separately. Results show
minimal performance losses compared to the fastest non-portable
solution on both CPU and GPU. Using this approach, five
applications have been ported to accelerators, showing minimal or
no slowdown on CPU while enabling high speedups on GPU.

Keywords—GPGPU, CUDA, OpenACC, Hybrid, Fortran, HPC

I. MOTIVATION
When porting real world HPC applications for accelerators,

performance portability is often one of the main goals - it is
imperative that code can be executed on different architectures
with at least reasonable performance. Achieving this for
accelerators is a major challenge since their architecture is so
different from CPUs.

Often the biggest change is going from coarse-grained
parallelism (order of 10-100 threads per processor) to fine
grained parallelism (order of 10’000 - 100’000 threads per
processor). This is particularly challenging for code that is
parallelized at a point in the program that is far removed from
the actual computations. The most prominent examples are
physical cores for weather and climate models. Our motivation,
the next generation Japanese weather prediction model
‚ASUCA‘, contains ~20k lines of code in its physical core -
parallelized in a single loop.

The usual approach (using OpenACC / OpenMP for Intel
MIC) is to privatize such code in the parallel domains in order
to split up into multiple smaller kernels. This leads to

1. Substantial performance losses when executing
this code on CPUs. It is therefore not performance
portable.

2. A complete rewrite of the computational code,
with lots of mechanical work for simply inserting
additional domains in declarations and accessors.
This is bug prone and leads to less readable code.

II. PROPOSAL
In order to (1) ensure performance portability and (2)

minimize code portation, we propose the following solution:

1. Allow both coarse grained and fine-grained
parallelization in the same codebase through
directives. This enables optimal parallelization for
both CPU and accelerator architectures.

2. Automate the privatization of symbols where
needed, such that the original code can be kept
with a low number of dimensions.

III. METHOD
Hybrid Fortran[1] is an Open Source preprocessor

framework and a Fortran language extension developed for the
task of allowing such hybridized parallelizations as described
in (2) and transforming such unified codes into standard x86
Fortran and Accelerator enabled Fortran. So far, OpenMP,
OpenACC and CUDA Fortran parallelizations are
implemented. Hybrid Fortran currently supports any data
parallel code that can be implemented on shared memory
systems. Storage order is abstracted and can be defined in a
central location without any changes to array accessors and
declarations.

Advantages over pure OpenMP / OpenACC:

• No manual privatization of callgraph necessary
(this saves ~20k LOC changes in case of ASUCA)

• Less overhead on GPU than OpenACC since
CUDA Fortr

• an can be used

• No directive code duplication

IV. PERFORMANCE RESULTS
Table I gives an overview over the current performance results (details please see the poster).

TABLE I. PERFORMANCE RESULTS

V. CONCLUSION AND FUTURE WORK

The preprocessor framework “Hybrid Fortran” has been
developed and shown to

1. be performance portable,

2. require minimum code changes for porting CPU code
to accelerators,

3. be general purpose capable for various data parallel
problems.

Until Early 2015 we will extend the ASUCA on Hybrid
Fortran implementation to include the entire model (Dynamical
+ Physical Core) and integrate the multi-node parallelization
using MPI. ASUCA on Hybrid Fortran is expected to become
production ready and operational in 2015.

ACKNOWLEDGMENT
We’d like to thank Dr. Johan Hysing, Tokyo Institute of

Technology, for his contributions on the Poisson Solver. Many
thanks also to Dr. Martin Schlueter for the collaboration on
porting a sample problem for the MIDACO solver onto Hybrid
Fortran.

REFERENCES
[1] M. Müller “Hybrid Fortran Github Repository”, [Website, Accessed

2014-10-17] http://github.com/muellermichel/Hybrid-Fortran
[2] T. Hara et. al “Development of the Physics Library and its application to

ASUCA”, 2012
[3] M. Schlueter “MIDACO-Global Optimization Software for Mixed

Integer Nonlinear Programming”, 2009

Performance Characteristics

Speedup HF on
6 Core vs. 1

Core

Speedup HF on
GPU vs 6 Core

Speedup HF on
GPU vs 1 Core

1. ASUCA Physical Weather Prediction
Core (121 Kernels) [2]

Mixed, Coarse Grain Parallelism 4.47x 3.63x 16.22x

2. 3D Diffusion (Source on Github) [1] Memory Bandwidth Bound, Fine
Grained Parallelism 1.06x 10.94x 11.66x

3. Particle Push (Source on Github) [1] Computationally Bound, Sine/Cosine
operations, Fine Grained Parallelism 9.08x 21.72x 152.79x

4. Poisson on FEM Solver with Jacobi
Approximation (Source on Github) [1]

Memory Bandwidth Bound, Fine
Grained Parallelism 1.41x 5.13x 7.28x

5. MIDACO Ant Colony Solver with
MINLP Example (Source on Github)
[1] [3]

Computationally Bound, Divisions,
Coarse Grain Parallelism 5.26x 10.07x 52.99x

