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Abstract

A numerical study of the MIDACO optimization software on the well
known GTOP benchmark set, published by the European Space Agency
(ESA), is presented. The GTOP database provides trajectory models of real-
world interplanetary space missions such as Cassini, Messenger or Rosetta.
The trajectory models are formulated as constrained nonlinear optimization
problems and are known to be difficult to solve.

Here a comprehensive and rigorous numerical analysis of the MIDACO
out-of-the-box performance on the GTOP benchmark set is presented and
discussed. In the past, the putative best known solutions of these bench-
marks often required several months and even years to be found. In this
contribution it will be shown, that MIDACO is able to solve five out of seven
of these benchmarks to their best known solution within minutes to hours.
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1. Introduction

Since 2005 the Advanced Concept Team (ACT) of the European Space
Agency (ESA) publishes a database of Global Trajectory Optimization (GTOP)
problems (see ESA Website (2013)) and encourages researchers from space
engineering and operational research to submit putative best known solutions
to these benchmarks. This benchmark set is known as the GTOP database
and represents trajectory models of real-world interplanetary space missions.
Currently the GTOP database consists of eight benchmark problems, which
are published as a single problem instance except the Tandem benchmark,
which is published in 50 different instances. In this contribution the entire
GTOP set, except the Tandem problem, is considered. The Tandem problem
is excluded, because its variation of 50 individual instances is unsuitable for
the proposed numerical test setup, which considers 10 test runs of up to 24
hours for each problem instance!. The considered seven GTOP benchmark
problems are listed in Table 1 together with the number of decision variables,
the number of constraints, the number of submissions of putative best known
solutions and the time between the first and last of such solution submission.

Table 1: GTOP database benchmark problems

Number of Time between first
Benchmark Name  Variables Constraints submissions and last submission

Cassinil 6 4 3 6 month
GTOCT* 8 6 2 13 month
Messenger (reduced) 18 0 3 11 month
Messenger (full)* 26 0 9 58 month
Cassini2* 22 0 7 14 month
Rosetta 22 0 7 6 month
Sagas 12 2 1 -

*Best known solution found by MIDACO and published on ESA Website

(2013).

The GTOP benchmark problems are all highly non-linear and are known
to be difficult to solve, despite their relatively low number of decision vari-
ables and constraints. The difficulty of these problems is also reflected in the

'In case of the Tandem benchmark this setup would imply a calculation time of up to
500 days.



time span between the first and last solution submission reported in Table 1.
The easiest problem in the set is considered to be Cassinil, while the most
difficult problem in the set is considered to be Messenger (full), which took
nearly five years between its first and last solution submission.

Note that the GTOP benchmarks are in fact so difficult, that the majority
of currently available publications focus only on a few benchmarks (often just
one or two instances). Table 2 gives an overview on some publications that
consider GTOP benchmark problems. In Table 2 it is stated how many
problems were considered by the authors and how many of those could be
solved to the current best known solution®.

Table 2: Overview on publications on GTOP database

Author(s) Problems Solved
Gruber (2009) 1 1
Lancinskas, Zilinskas & Ortigosa (2010) 1 0
Danoy, Pinto & Dorronsoro (2012) 1 1
Islam, Roy & Suganthan (2012) 2 0
Gad (2011) 2 0
Ampatzis and Izzo (2009) 2 1
Biazzini, Banhelyi, Montresor et al. (2009) 2 1
Musegaas (2012) 2 2
Henderson (2013) 2 1
Biscani, Izzo & Yam (2010) 3 2
Izzo (2010) 4 1
Addis, Cassioli, Locatelli et al. (2011) 4 3
Vinko & Izzo (2008) 5 1
Stracquadanio, La Ferla, De Felice et al. (2011) 7 6

From Table 2 it can be seen, that only Stracquadanio, La Ferla, De Felice
et al. (2011) considered (nearly) the full GTOP testbed. Despite impressive
final objective function values presented in that reference it is to note, that
no information on the required time, evaluation or possible tuning of the
algorithm and problem search space is given in that reference.

Tt is referred here to the best known solution due to the date of this publication within
a precision of 0.1%. Therefore some of the solutions presented in the references of Table
2 as best known are nowadays known to be sub-optimal.



The MIDACO software was developed as a general purpose optimization
solver and has been written entirely from scratch by the author. The soft-
ware does not rely on any external libraries. It has been extensively tested on
space applications and in particular trajectory optimization (see for example
Schlueter (2012b) or Schlueter, Erb, Gerdts et al. (2013a)). Currently
MIDACO holds the best known solution to three of the benchmarks listed
in Table 1, including the best known solution to the most difficult problem:
Messenger (full). MIDACO is based on the concept of evolutionary program-
ming, which aims on approximating a good solution to difficult problems in
a reasonable time. MIDACO employs the Ant Colony Optimization (ACO)
metaheuristic in combination with the Oracle Penalty Method. Readers who
are interested in the detailed theoretical ACO algorithm used in MIDACO,
are referred to Schlueter, Egea & Banga (2009) and Schlueter (2012b),
Chapter 2 and in particular Section 2.4, where an illustrative step-by-step
example is given. Readers who are interested in the details of the Oracle
Penalty Method are referred to Schlueter & Gerdts (2010). Note that the
performance strength of MIDACO does not only rely on its fundamental al-
gorithms, but also on its sophisticated software implementation which took
over 7 years of development for the current version.

The purpose of this contribution is to rigorously demonstrate the out-of-
the-box! performance capabilities of the MIDACO software on space mission
trajectory optimization problems and to provide a performance reference for
other researchers working on the GTOP database. This paper is structured
as follows: In Section 2, numerical results on all seven benchmarks are pre-
sented and discussed in detail in individual subsections. In Section 3, a brief
summary of the numerical results obtained from Section 2 is displayed as an
overview. The paper finishes with some conclusions and an outlook on future
research.

'The term out-of-the-box means here, that the software is used with all its default
settings and no effort has been undertaken to specifically tune any of its parameters.
Furthermore the benchmarks are considered ”as is” and are not modified in any way.



2. Numerical Results

This section presents the numerical results obtained by MIDACO on the
GTOP database. In regard to an out-of-the-box approach, every individ-
ual benchmark is tested under exact identical conditions. In order to avoid
unnecessary repeating of those test setup details, it should be given in this
introduction in full detail. The testing for each benchmark was split into two
setups: A main-setup and a refinement-setup.

The main-setup consists of 10 individual MIDACO tests runs on the
benchmark problem. The main-setup does not include any algorithmic pa-
rameter tuning for MIDACO and therefore represents the out-of-the-box per-
formance. Each test run of the main-setup is either stopped, when MIDACO
reaches a solution which is at least 0.1%? close to the best known one, or if a
maximal cpu-time budget of 86,400 seconds (24 hours) is reached. Each test
run of the main-setup uses a different random seed, starting from 0 to 9 for
the ten test runs. This means, no particular good random seeds were picked.

The refinement-setup consist of only a single test run of MIDACO, using
the best solution found in the previous main-setup as starting point. As the
purpose of the refinement-setup is to improve the precision of the previously
gained solution, one specific algorithmic parameter of MIDACO is tuned.
This is the FOCUS parameter (see the MIDACO user manual Schlueter &
Munetomo (2013c)), which disables global search heuristics within MIDACO
and allows the algorithm to focus its search effort on the current best solution.
The value for the FOCUS parameter was fixed to -10000 for all benchmarks.
Note that this parameter was therefore not individually tuned for each bench-
mark. Every refinement test run was started with the default random seed
(zero).

All benchmarks are considered in their original form provided on the ESA
Website (2013). This means in particular, that no modification of the search
space (the lower and upper bounds for decision variables) has been conducted.
As starting point for the test runs of the main-setup, the lower bounds were
used in all cases. For constrained problems, MIDACO’s default tolerance for
constraint violation was considered, which is 1073.

!Note that 0.1% is the official precision requested by ESA for new solution submissions.
Solutions close as 0.1% can therefore be considered ”as good as” the solutions published
on the ESA Website (2013).



The C/C++ version of MIDACO 4.0 was used for the numerical tests
and the parallelization feature of MIDACO based on openMP was enabled.
The parallelization feature of MIDACO aims on executing several solution
iterates in so called ”blocks”. As the tests were performed on a quad-core
cpu with hyper-threading, a parallelization factor of 8 was applied. This
implies that each block corresponds to 8 individual function evaluations. In
the following tables both, the number of blocks and the number of function
evaluation are reported. Because the GTOP benchmarks are fairly cheap to
compute regarding their cpu-time, the speed-up factor of this parallelization
approach is not fully effective, but is sufficient to give a speed up between two
and three times in contrast to a serial execution. Details on the paralleliza-
tion concept of MIDACO can be found in Schlueter, Gerdts & Rueckmann
(2012a) or Schlueter & Munetomo (2013b).

All presented numerical results were calculated on the same PC with an
Intel Core i7 quad-core CPU 920@2.67 GHz clockrate and 4GB RAM memory
running Linux (CentOS 6.3). In regard to full transparency and reproducibility,
the main file source code, the makefile, the final solutions and the numerical
screen outputs of all test runs are made publicly available at:

http://www.midaco-solver.com/index.php/about/benchmarks/esa-gtop

Note that the total cpu-time required for all tests presented here took
over 41 days.

2.1. Results on Cassinil

The Cassinil benchmark models an interplanetary space mission to Sat-
urn. The objective of the mission is to get captured by Saturn’s gravity
into an orbit having a pericenter radius of 108,950 km and an eccentricity
of 0.98. The sequence of fly-by planets for this mission is given by Earth-
Venus-Venus-Earth-Jupiter-Saturn, whereas the first item is the start planet
and the last item is the final target. This benchmark does not include deep
space maneuvers (DSM) and is therefore easier than the Cassini2 benchmark.
The objective function of this benchmark is to minimize the total deltaV ac-
cumulated during the mission, including the launch and capture manouvre.
The benchmark invokes 6 decision variables, which are described as follows:

This benchmark further considers four constraints, which impose an upper
limit on the pericenters for the four fly-by manourvers. The currently best
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Variable

Description

1 Initial day measured from 1-Jan 2000

2 ~ 6  Time interval between events (e.g. departure, fly-by, capture)

known solution published on the ESA Website (2013) was provided by a par-
ticle swarm optimization algorithm in 2006 and corresponds to an objective
function value of about f(z) = 4.93073. This benchmark is considered the
easiest one in the GTOP database. Table 3 displays the numerical results of

10 individual test runs of MIDACO on Cassinil.

Table 3: 10 Test runs of MIDACO on Cassinil

Run  f(X) Blocks Eval Time (Sec)
1 4933760 226,556 1,812,448 12
2 4935615 1,290,295 10,322,360 66
3 4.935378 189,257 1,514,056 10
4 4935624 328,743 2,629,944 17
5 4.935491 1,050,408 8,403,264 60
6 4935602 2,019,317 16,154,536 103
7 4934514 2,926,304 23,410,432 152
8  4.935575 240,084 1,920,672 13
9 4935630 471,085 3,768,680 25
10 4.934698 865,179 6,921,432 198

The convergence curves of the 10 individual runs from Table 3 are illus-
trated in Figure 1. Note that the X-axis in Figure 1 is given in logarithmic

scale.




Figure 1: Convergence curves of 10 runs by MIDACO on Cassinil
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From the results in Table 3 it can be seen that MIDACO is able to reach
the best known solution within a precision of 0.1% in all cases. Test run
number 3 represents the best run corresponding to a cpu-time of 10 seconds
and 189,257 processed Blocks. Test run number 10 represents the worst run
corresponding to a cpu-time of 198 seconds and 865179 processed Blocks.
From Figure 1 it can be seen that after around 20 seconds all test runs con-
verged to a objective function value less than f(x) = 9.89 (which is around
twice as high as the best known solution).

Figure 2 illustrates the convergence curve of the refinement run for the
solution from test run number 3 of Table 3. In addition to the convergence
curve, the value of the best known solution is plotted as a red line in Figure
2. Note that the X-axis in Figure 2 is given in logarithmic scale.



Figure 2: Convergence curves of refinement run on best solution from Table 3
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From Figure 2 it can be seen that the exact value of the best known
solution is (b)reached at around 30 seconds. Furthermore it can be seen from
Figure 2 that no further improvements are achieved after around 100 seconds.
The refined MIDACO solution represents a (very marginal) improvement of
about 0.0004% in respect to the current best known solution. The constraint
violation of the solution is zero.

For further numerical results of MIDACO on Cassinil, see Schlueter &
Munetomo (2014).

2.2. Results on GTOC1

The GTOC1 benchmark models a multi gravity assist space mission to
asteroid TW229. The mission model drew inspiration from the first edition
of the Global Trajectory Optimisation Competition (GTOC) held by ESA
in 2007, see Izzo (2007). The objective of the mission is to maximize the



change in the semi-major axis of the asteroid orbit.The sequence of fly-by
planets for this mission is given by Earth-Venus-Earth-Venus-Earth-Jupiter-
Saturn-TW229, whereas the first item is the start planet and the last item
is the final target. This benchmark invokes 8 decision variables which are
described as follows:

Variable Description
1 Initial day measured from 1-Jan 2000
2 ~ 8  Time interval between events (e.g. departure, fly-by, capture)

This benchmark further considers four constraints, which impose an up-
per limit on the pericenters for the four fly-by manourvers. The currently
best known solution published on the ESA Website (2013) was provided by
MIDACO in 2010 and corresponds to an objective function value of about
f(x) = —1,581,950. Table 4 displays the numerical results of 10 individual
test runs of MIDACO on GTOCI. In contrast to all other considered bench-
mark problems, the cpu-time budget for GTOC1 was reduced from 24 hours
to 2.5 hours, due to numerical problems that appeared during the test runs
running for longer than some hours. Those numerical problems caused the
program to crash and despite some efforts, unfortunately this problem could
not be debugged.

Table 4: 10 Test runs of MIDACO on GTOC1

Run f(x) Blocks Eval Time (Sec)
1 -1,576,138.804495 112,762,980 902,103,840 9,000
2 -1,473,037.748785 102,835,741 822,685,928 9,000
3 -1,352,425.329790 114,074,622 912,596,976 9,000
4 -1,216,521.106878 105,953,390 847,627,120 9,000
5 -1,287,827.674593 110,374,220 882,993,760 9,000
6  -1,212,631.180987 105,591,555 844,732,440 9,000
7 -1,274,590.172825 111,975,533 895,804,264 9,000
8§  -1,304,656.895131 110,261,908 882,095,264 9,000
9  -1,287,827.597517 104,785,169 838,281,352 9,000
10 -1,258,275.058802 103,004,166 824,033,328 9,000

The convergence curves of the 10 individual runs from Table 4 are illus-
trated in Figure 3. In addition to the convergence curve, the value of the
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best known solution is plotted as a red line in Figure 3. Note that the X-axis
in Figure 3 is given in logarithmic scale.

Figure 3: Convergence curves of 10 runs by MIDACO on GTOC1
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From the results in Table 4 it can be seen that MIDACO is not able to
reach the best known solution within a precision of 0.1% in any test run
within the given time budget. Test run number 1 represents the best run
corresponding to an objective function value of around -1,576,138. Test run
number 6 represents the worst run corresponding to an objective function
value of around -1,212,631. From both Table 4 and Figure 3 it can be seen
that the cpu-time budget of 2.5 hours is too short for MIDACO to converge
to a final solution. The numerical problems that forced us to reduce the cpu-
time budget is therefore considered a misfortune, in particular as MIDACO
has in the past provided the current best known solution. Because of the
numerical problems, no refinement test run was performed for GTOCI.
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2.8. Results on Messenger (reduced)

The Messenger (reduced) benchmark models an interplanetary space mis-
sion to Mercury and does not include resonant flyby’s at Mercury. The
sequence of fly-by planets for this mission is given by Earth-Earth-Venus-
Venus-Mercury, whereas the first item is the start planet and the last item
is the final target. The objective of this benchmark to be minimized is the
total deltaV accumulated during the full mission. The benchmark invokes
18 decision variables which are described as follows (for details on hyperbolic
trajectories, see Kemble (2006)):

Variable Description
1 Initial day measured from 1-Jan 2000
2 Initial excess hyperbolic speed (km/sec)
3 Component of excess hyperbolic speed
4 Component of excess hyperbolic speed
5~ 8 Time interval between events (e.g. departure, fly-by, capture)
9~ 12 Fraction of the time interval after which DSM occurs
13 ~ 15 Radius of flyby (in planet radii)

16 ~ 18 Angle measured in planet B plane of the planet approach vector

The currently best known solution published on the ESA Website (2013)
was provided by ESA itself in 2009 and corresponds to an objective function
value of about f(x) = 8.6305. Table 5 displays the numerical results of 10
individual test runs of MIDACO on Messenger (reduced).

The convergence curves of the 10 individual runs from Table 5 are illus-
trated in Figure 4. Note that the X-axis in Figure 4 is given in logarithmic
scale.

From the results in Table 5 it can be seen that MIDACO is able to reach
the best known solution within a precision of 0.1% in 6 out of 10 cases. Test
run number 7 represents the best run corresponding to a cpu-time of 3096
seconds and around 30 Million processed Blocks. In all 4 cases were MI-
DACO does not reach the best known solution within a precision of 0.1%,
it obtains an objective function value of around f(x) = 8.7016, which ap-
pears to be a strong! local optimum. From Figure 4 it can be seen that

IBy strong local optimum it is meant, that despite all restarts heuristics within MI-
DACO, the software was not able to escape from this local optimum. The attraction of
such solution is therefore considered strong.
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Table 5: 10 Test runs of MIDACO on Messenger (reduced)

Run  f(z) Blocks Eval Time (Sec)
1 8.701630 849,630,359 6,797,042,872 86,400
2 8.638482 451,696,680 3,613,573,440 46,017
3 8701631 846,510,501 6,772,084,008 86,400
4 8.701630 860,380,827 6,883,046,616 86,400
5  8.701630 849,812,316 6,798,498,528 86,400
6  8.638482 452,641,059 3,621,128,472 45,478
7 8.638620 30,732,566 245,860,528 3,096
8  8.638625 176,473,292 1,411,786,336 18,340
9  8.638571 358,532,292 2,868,258,336 35,304
10 8.638482 452,589,650 3,620,717,200 47,075

Figure 4: Convergence curves of 10 runs by MIDACO on Messenger (reduced)
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after around 3000 seconds (less than an hour) all test runs converged to a
objective function value which is less or around f(z) = 8.7 (which is closer
than 1% on the best known solution).

Figure 5 illustrates the convergence curve of the refinement run for the
solution from test run number 7 of Table 5. In addition to the convergence
curve, the value of the best known solution is plotted as a red line in Figure
5. Note that the X-axis in Figure 5 is given in logarithmic scale.

Figure 5: Convergence curves of refinement run on best solution from Table 5
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From Figure 5 it can be seen that the exact value of the best known
solution is (b)reached at around 200 seconds. Furthermore it can be seen
from Figure 5 that no further improvements are achieved after around 1000
seconds. The refined MIDACO solution represents a (very marginal) im-
provement of about 0.003% in respect to the current best known solution.

14



2.4. Results on Messenger (full)

The Messenger (full) benchmark models an interplanetary space mission
to Mercury, including resonant flyby’s at Mercury. The sequence of fly-by
planets for this mission is given by Earth-Venus-Venus-Mercury-Mercury-
Mercury-Mercury, whereas the first item is the start planet and the last item
is the final target. The objective of this benchmark to be minimized is the
total deltaV accumulated during the full mission. The benchmark invokes
26 decision variables which are described as follows (for details on hyperbolic
trajectories, see Kemble (2006)):

Variable Description
1 Initial day measured from 1-Jan 2000
2 Initial excess hyperbolic speed (km/sec)
3 Component of excess hyperbolic speed
4 Component of excess hyperbolic speed
5~ 10 Time interval between events (e.g. departure, fly-by, capture)
11 ~ 16 Fraction of the time interval after which DSM occurs
17 ~ 21 Radius of flyby (in planet radii)

22 ~ 26 Angle measured in planet B plane of the planet approach vector

The currently best known solution? published on the ESA Website (2013)
was provided by MIDACO in April 2014 and corresponds to an objective
function value of about f(z) = 1.972. This benchmark is considered cur-
rently the most challenging one in the GTOP database. Table 6 displays the
numerical results of 10 individual test runs of MIDACO on Messenger (full).

The convergence curves of the 10 individual runs from Table 6 are illus-
trated in Figure 6. In addition to the convergence curve, the value of the
best known solution is plotted as a red line in Figure 6. Note that the X-axis
in Figure 6 is given in logarithmic scale.

From the results in Table 6 it can be seen that MIDACO is not able to
reach the best known solution within a precision of 0.1% in any test run. Test
run number 6 represents the best run corresponding to an objective function
value of around 3.774. From Figure 4 it can be seen that after around 2000
seconds (less than an hour) all test runs converged to a objective function

2 Note that also the second and third best knwon solution to the Messenger (full)
problem was provided by MIDACO. Finding these solutions required several weeks of
calculation time.
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Objective Function Walue f(x)

Table 6: 10 Test runs of MIDACO on Messenger (full)

Run  f(X) Blocks Eval Time (Sec)
1 3.773516 259,926,212 2,079,409,696 86,400
2 5798113 469,043,937 3,752,351,496 86,400
3 6.103643 480,289,911 3,842,319,288 86,400
4 6.196446 400,321,791 3,202,574,328 86,400
5  5.798110 492,939,982 3,943,519,856 86,400
6  3.773516 259,523,954 2,076,191,632 86,400
7 6.103820 448,308,750 3,586,470,000 86,400
8  6.196446 404,095,637 3,232,765,096 86,400
9  6.198637 427,785,452 3,422,283,616 86,400
10 6.196446 406,934,916 3,255,479,328 86,400

Figure 6: Convergence curves of 10 runs by MIDACO on Messenger (full)
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value which is less or around f(x) = 6.2 (which is still over 200% away from
the best known solution).

The refinement run of the best found solution resulted only in a very
marginal improved objective function value of 3.772, which is still far away
from the best known solution of 1.972.

2.5. Result on GTOP Benchmark Cassini2

The Cassini2 benchmark models an interplanetary space mission to Sat-
urn, including deep space maneuvers (DSM) and is therefore considerable
more difficult than its counterpart benchmark: Cassinil. The sequence of
fly-by planets for this mission is given by Earth-Venus-Venus-Earth-Jupiter-
Saturn, whereas the first item is the start planet and the last item is the
final target. The objective of this benchmark to minimize the total deltaV
accumulated during the full mission, whereas in contrast to Cassinil the fi-
nal deltaV manouvre is considered to be a rendezvous instead of an orbit
insection. The benchmark invokes 22 decision variables which are described
as follows (for details on hyperbolic trajectories, see Kemble (2006)):

Variable Description
1 Initial day measured from 1-Jan 2000
2 Initial excess hyperbolic speed (km/sec)
3 Component of excess hyperbolic speed
4 Component of excess hyperbolic speed
5~9 Time interval between events (e.g. departure, fly-by, capture)
10 ~ 14 Fraction of the time interval after which DSM occurs
15 ~ 18 Radius of flyby (in planet radii)

19 ~ 22 Angle measured in planet B plane of the planet approach vector

The currently best known solution published on the ESA Website (2013)
was provided by MIDACO in 2009 and corresponds to an objective function
value of about f(x) = 8.3832. Table 7 displays the numerical results of 10
individual test runs of MIDACO on Cassini2.

The convergence curves of the 10 individual runs from Table 5 are illus-
trated in Figure 7. Note that the X-axis in Figure 7 is given in logarithmic
scale.

From the results in Table 7 it can be seen that MIDACO is able to reach
the best known solution within a precision of 0.1% in 2 out of 10 cases. Test
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Table 7: 10 Test runs of MIDACO on Cassini2

Run  f(x) Blocks Eval Time (Sec)
1 8.608853 608,948,972 4,871,591,776 86,400
2 8.608904 584,306,388 4,674,451,104 86,400
3 8608884 619,145812 4,953,166,496 86,400
4 8.608868 608,206,882 4,865,655,056 86,400
5 8391325 373,547,088 2,988,376,704 52,029
6  8.391325 373,534,014 2,988,272,112 54,515
7 8608896 592,815,972 4,742.527.776 86,400
8 8.608%61 632,284.426 5,058 275,408 86,400
9  8.608878 604,858,279 4,838,866,232 86,400
10 8.608864 580,064,798 4,640,518,384 86,400

Figure 7: Convergence curves of 10 runs by MIDACO on Cassini2
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run number 5 represents the best run corresponding to a cpu-time of 52,029
seconds (about 15 hours) and around 370 Million processed Blocks. In all 8
cases were MIDACO does not reach the best known solution within a preci-
sion of 0.1%, it obtains an objective function value of around f(x) = 8.609,
which appears to be a strong local optimum. From Figure 7 it can be seen
that after around 1500 seconds all test runs converged to an objective func-
tion value around f(z) = 8.6 (which is as close as around 2.5% on the current
best solution).

Figure 8 illustrates the convergence curve of the refinement run for the
solution from test run number 5 of Table 7. In addition to the convergence

curve, the value of the best known solution is plotted as a red line in Figure
5. Note that the X-axis in Figure 5 is given in logarithmic scale.

Figure 8: Convergence curves of refinement run on best solution from Table 7
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From Figure 8 it can be seen that the exact value of the best known
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solution is (b)reached at less than 20,000 seconds (less than 6 hours). Fur-
thermore it can be seen from Figure 8 that no further improvements are
achieved after around 70,000 seconds. The refined MIDACO solution rep-
resents a (very marginal) improvement of about 0.001% in respect to the
current best known solution.

2.6. Results on Rosetta

The Rosetta benchmark models multi gravity assist space mission to comet
67P /Churyumov-Gerasimenko, including deep space maneuvers (DSM). The
sequence of fly-by planets for this mission is given by Earth-Earth-Mars-
Earth-Earth-67P, whereas the first item is the start planet and the last item
is the final target. The objective of this benchmark is to minimize the to-
tal deltaV accumulated during the full mission. The benchmark invokes 22
decision variables which are described as follows (for details on hyperbolic
trajectories, see Kemble (2006)):

Variable Description
1 Initial day measured from 1-Jan 2000
2 Initial excess hyperbolic speed (km/sec)
3 Component of excess hyperbolic speed
4 Component of excess hyperbolic speed
5~9 Time interval between events (e.g. departure, fly-by, capture)
10 ~ 14 Fraction of the time interval after which DSM occurs
15 ~ 18 Radius of flyby (in planet radii)

19 ~ 22 Angle measured in planet B plane of the planet approach vector

The currently best known solution published on the ESA Website (2013)
was provided by the University of Glasgow in 2008 and corresponds to an ob-
jective function value of about f(x) = 1.3433. Table 8 displays the numerical
results of 10 individual test runs of MIDACO on Rosetta.

The convergence curves of the 10 individual runs from Table 8 are illus-
trated in Figure 9. Note that the X-axis in Figure 9 is given in logarithmic
scale.

From the results in Table 8 it can be seen that MIDACO is able to reach
the best known solution within a precision of 0.1% in 9 out of 10 cases. Test
run number 8 represents the best run corresponding to a cpu-time of 583 sec-
onds (less than 10 minutes) and around 4.7 Million processed Blocks. In the
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Table 8: 10 Test runs of MIDACO on Rosetta

Run  f(x) Blocks Eval Time (Sec)
1 1.344343 351,389,732 2,811,117,856 50,060
2 1.344317 239,059,215 1,912,473,720 34,617
3 1.344343 155,857,377 1,246,859,016 21,087
4 1.345374 601,973,065 4,815,784,520 86,400
5 1.344295 367,822,959 2,942 583,672 49,784
6 1.344343 314,676,792 2,517,414,336 42,105
7 1.344340 282,036,178 2,256,289,424 40,972
8  1.344343 4,670,118 37,360,944 583
9 1.344338 189,976,320 1,519,810,560 25,890
10 1.344317 238,944,394 1,911,555,152 35,247
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Figure 9: Convergence curves of 10 runs by MIDACO on Rosetta
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one case were MIDACO does not reach the best known solution within a pre-
cision of 0.1%, it obtains an objective function value of around f(z) = 1.345,
which is still close to the best known solution. From Figure 9 it can be seen
that after around 1500 seconds all test runs converged to an objective func-
tion value less than f(x) = 1.4 (which is closer than 5% on the best known
solution).

Figure 10 illustrates the convergence curve of the refinement run for the
solution from test run number 5 of Table 8. In addition to the convergence
curve, the value of the best known solution is plotted as a red line in Figure
10. Note that the X-axis in Figure 10 is given in logarithmic scale.

Figure 10: Convergence curves of refinement run on best solution from Table 8
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From Figure 10 it can be seen that the exact value of the best known
solution is not reached within the cpu-time budget of 24 hours; instead, after
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the full cpu-time budget is spent the refined solution remains around 0.01%
above the best known solution.

2.7. Results on Sagas

The Sagas benchmark models is described as a deltaV-EGA manouvre to
fly-by Jupiter and reach the keplerian orbit of 50AU. The sequence of fly-by
planets for this mission is given by Earth-Earth-Jupiter, whereas the first
item is the start planet and the last item is the final target. The objective of
this benchmark is to minimize the total deltaV accumulated during the full
mission. The benchmark invokes 12 decision variables which are described
as follows (for details on hyperbolic trajectories, see Kemble (2006)):

Variable Description
1 Initial day measured from 1-Jan 2000
2 Initial excess hyperbolic speed (km/sec)
3 Component of excess hyperbolic speed
4 Component of excess hyperbolic speed
5~ 6 Time interval between events (e.g. departure, fly-by, capture)
7T~ 8 Fraction of the time interval after which DSM occurs
9~ 10 Radius of flyby (in planet radii)

11 ~ 12 Angle measured in planet B plane of the planet approach vector

This benchmark further considers two constraints, which impose an up-
per limit on the on-board fuel and launcher performance. The currently best
known solution published on the ESA Website (2013) was provided by a dif-
ferential evolution algorithm in 2005 and corresponds to an objective function
value of about f(z) = 18.1936. This solution remains the only submission to
this benchmark, it can therefore be considered a relatively easy one. Table
9 displays the numerical results of 10 individual test runs of MIDACO on
Sagas.

The convergence curves of the 10 individual runs from Table 9 are illus-
trated in Figure 11. Note that the X-axis in Figure 11 is given in logarithmic
scale. Further note that Figure 11 only displays the convergence curves of
feasible solutions with an objective function value less than 100. Values over
100 are discarded for better readability.

From the results in Table 9 it can be seen that MIDACO is able to reach
the best known solution within a precision of 0.1% in all cases. Test run
number 1 represents the best run corresponding to a cpu-time of 67 seconds
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Table 9: 10 Test runs of MIDACO on Sagas

f(x) Blocks Eval Time (Sec)
1 18203876 1,597,711 12,781,688 67
2 18.207551 10,072,832 80,582,656 365
3 18.207517 4,432,026 35,456,208 172
4 18.207866 20,239,855 161,918,840 724
5 18.208116 5,292,229 42,337,832 210
6  18.207517 23,777,511 190,220,088 964
7 18.207866 20,236,698 161,893,584 750
8  18.207866 20,216,963 161,735,704 862
9 18.208087 12,887,894 103,103,152 565
10 18.208154 54,127,623 433,020,984 2517

Figure 11: Convergence curves of 10 runs by MIDACO on Sagas
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and 1,597,711 processed Blocks. Test run number 10 represents the worst
run corresponding to a cpu-time of 2,517 seconds and 54,127,623 processed
Blocks. From Figure 11 it can be seen that (except for test run number 10)
after around 1,000 seconds all test runs converged to an objective function
value less than f(z) = 20 (which is closer than 10% on the best known solu-
tion).

Figure 12 illustrates the convergence curve of the refinement run for the
solution from test run number 1 of Table 9. In addition to the convergence
curve, the value of the best known solution is plotted as a red line in Figure
12. Note that the X-axis in Figure 12 is given in logarithmic scale.

Figure 12: Convergence curves of refinement run on best solution from Table 9
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From Figure 12 it can be seen that the exact value of the best known
solution is (b)reached already below 2 seconds. Furthermore it can be seen
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from Figure 12 that a significant improvement on the precision is achieved.
The refined MIDACO solution represents an improvement of about 0.04% in
respect to the current best known solution. The constraint violation of the
solution is zero.

3. Summary

This section gives an overview on the numerical results obtained in Section
2 for all considered benchmarks. In regard to an out-of-the-box approach,
MIDACO was able to obtain the best known solution for 5 out of 7 bench-
marks within a precision of 0.1%. The two instances in which MIDACO
did not reach the best known solution were GTOC1 and Messenger (full).
As Messenger (full) appears to be considerable more difficult than any of
the other benchmarks, it is not surprising that MIDACO failed to solve this
problem within the given time limit of 24 hours. In contrast to Messenger
(full), MIDACO’s failure on GTOCI is likely to be caused by the reduced
cpu-time budget of only 2.5 hours instead of 24 hours.

Table 10 gives a summary of the numerical results by MIDACO from
Section 2. The (approximate) cpu-time to reach the current best known
solution within a precision of 0.1% is reported for the best test run and as
the average over all successful test runs. Furthermore, Table 10 reports the
success rate out of the 10 individual runs.

Table 10: Summary of numerical results from Section 2 for all GTOP benchmarks

Benchmark Best Time Average Time Success Rate
Cassinil 10 seconds 1 minute 100%
GTOC1 - - 0%

Messenger (reduced) 1 hour 9 hours 60%
Messenger (full) - - 0%
Cassini2 15 hours 15 hours 20%
Rosetta 10 minutes 9 hours 90%

Sagas 1 minute 12 minutes 100%

4. Conclusions & Future Work

With currently 3 unbroken record solutions, including the one for the most
difficult instance, the MIDACO software has proven its potential on the in-
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terplanetary trajectory benchmarks from the GTOP database in the past.
Here a rigorous numerical evaluation of the out-of-the-box performance
of MIDACO on that database was presented. The GTOP benchmarks are
known to be difficult and previous solution submission times for those prob-
lems span several month and even years (see Table 1). In Section 2 it was
shown that MIDACO is able to solve five out of seven of these problems to
their best known solution within minutes to hours (see Table 10). As, to the
best knowledge of the authors, such an out-of-the-box performance on the
GTOP database is yet unmatched by any other available optimization soft-
ware, it is concluded that MIDACO currently represents the state-of-the-art
for interplanetary space mission trajectory optimization.

The presented numerical results were obtained under exploitation of MI-
DACQ’s parallelization feature for multi-core CPU’s. The here considered
parallelization factor of 8 was set for a hyper-threaded quad-core cpu and
remains relatively low in the context of currently available parallel architec-
tures. Future research might investigate the impact of significantly higher
parallelization factors on massively parallelizable computer architectures.
Further reductions of the cpu-time required to solve this kind of applica-
tion are expected by such an approach, as it was recently indicated in (see
Schlueter & Munetomo (2014).
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