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a b s t r a c t

This contribution introduces the GTOPX space mission benchmark collection, which is an extension
of the GTOP database published by the European Space Agency (ESA). The term GTOPX stands for
Global Trajectory Optimization Problems with eXtension. GTOPX consists of ten individual benchmark
instances representing real-world interplanetary space trajectory design problems. In regard to the
original GTOP collection, GTOPX includes three new problem instances featuring mixed-integer and
multi-objective properties. GTOPX enables a simplified user-handling, unified benchmark function
call and some minor bug corrections to the original GTOP implementation. Furthermore, GTOPX
is linked from original C++ source code to Python and Matlab based on dynamic link libraries,
assuring computationally fast and accurate reproduction of the benchmark results in all programming
languages. We performed a comprehensive landscape analysis to characterize the properties of the
fitness landscape of GTOPX benchmarks. Space mission trajectory design problems as those represented
in GTOPX are known to be highly non-linear and difficult to solve. The GTOPX collection therefore
aims in particular at researchers wishing to put advanced (meta)heuristic and hybrid optimization
algorithms to the test.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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Current code version V 1.0
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Python on Windows, Linux and MacOS
If available Link to developer documentation/manual http://www.midaco-solver.com/index.php/about/benchmarks/gtopx
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1. Motivation and significance

The optimal design of interplanetary space mission trajecto-
ies is an active and challenging research area in aerospace and
elated communities, such as the evolutionary and metaheuristic
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optimization community. Since 2005, the European Space Agency
(ESA) maintained a set of real-world space mission trajectory
design problems in form of numerical black-box optimization
problems, known as the GTOP database [1]. Note that the term
‘‘black-box’’ refers here to an optimization problem, where the
actual problem formulation is unknown, inaccessible or unrelated
to the optimizer. These kind of black-box problems frequently
occur in many areas, where complex computer simulations are
applied. Given the usefulness and success of the GTOP endeavor

in the past, here we present an extended and refurbished version,

ttps://doi.org/10.1016/j.softx.2021.100666
352-7110/© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.softx.2021.100666
http://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2021.100666&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://github.com/ElsevierSoftwareX/SOFTX-D-20-00072
http://www.midaco-solver.com/index.php/about/benchmarks/gtopx
mailto:info@midaco-solver.com
mailto:schlueter@midaco-solver.com
mailto:mehdi.neshat@adelaide.edu.au
mailto:mohamed.attia@aist.go.jp
mailto:munetomo@iic.hokudai.ac.jp
mailto:markus.wagner@adelaide.edu.au
https://doi.org/10.1016/j.softx.2021.100666
http://creativecommons.org/licenses/by/4.0/


Martin Schlueter, Mehdi Neshat, Mohamed Wahib et al. SoftwareX 14 (2021) 100666

o
m
f
T
p
l

Table 1
GTOPX Benchmark Instances (see [1] for solution references).
No. Name Objectives Variables Constraints Best known f (x, y)

1 Cassini1 1 6 4 4.9307
2 Cassini2 1 22 0 8.3830
3 Messenger (reduced) 1 18 0 8.6299
4 Messenger (full) 1 26 0 1.9579
5 GTOC1 1 8 6 −1581950.0
6 Rosetta 1 22 0 1.3434
7 Sagas 1 12 2 18.1877
8 Cassini1-MINLP 1 10 4 3.5007
9 Cassini1-MO 2 6 5 na
10 Cassini1-MO-MINLP 2 10 5 na

named GTOPX, as continuation to the no longer maintained GTOP
database.

While all problems of the original GTOP database were single-
bjective and continuous in the nature of the search space do-
ain, the GTOPX collection includes three new problem instances

eaturing mixed-integer and multi-objective problem properties.
he general mathematical form of the considered optimization
roblem in GTOPX is given as multi-objective Mixed-integer Non-
inear Programming (MINLP):

Minimize fi(x, y) (x ∈ Rncon , y ∈ Nnint , ncon, nint ∈ N)

subject to: gi(x, y) ≥ 0, i = 1, . . . ,m ∈ N
xl ≤ x ≤ xu (xl, xu ∈ Rncon )
yl ≤ y ≤ yu (yl, yu ∈ Nnint )

(1)

where fi(x, y) and gi(x, y) denote the objective and constraint
functions depending on continuous (x) and discrete (y) decision
variables, which are box-constrained to some lower (xl, yl) and
upper (xu, yu) bounds. The ten individual benchmark instances
of GTOPX are listed in Table 1 with their name, the number
of objectives, variables and constraints together with the best
known objective function value f (x, y). Note that due to the many
years these benchmarks have been available and been tested, it
is believed that all listed solutions are essentially converged.

The GTOP database has attracted a significant amount of at-
tention and results have been published, see for example [2–15].
Note that the majority of publications discussing results on GTOP
focus on only one or a few problem instances. This is due to
the difficulty of these problems, which often require many mil-
lions of function evaluations to allow an optimization algorithm
to converge to the best known solution. This difficulty is what
makes this collection of benchmark problems interesting and a
real challenge, even requiring the use of massively distributed
computing power by supercomputers in the most difficult cases
(see Shuka [16] or Schlueter [17]).

While the focus of the original GTOP database was rather on
the nature of the application itself, the GTOPX collection aims
to address the broad community of numerical optimization re-
searchers. It does so by a simplified and more user-friendly source
code base, that allows easy execution of the benchmarks in three
programming languages: C/C++, Python and Matlab. The entire
source code base of GTOPX has been compressed into a single
file (namely ‘‘gtopx.cpp’’) that is linked via dynamic link libraries
(DLL) into the Python and Matlab language. The linking of a pre-
compiled DLL has the significant advantage of computation speed
and accurate reproduction of results among all considered pro-
gramming languages, in contrast to a native re-implementation
in other languages, which is computationally slower and error
prone.

The function call to the individual GTOPX benchmark instances

accessed with only switching one integer parameter (namely the
benchmark number). The generalized call to the GTOPX problem
functions in each language is given as follows:

C/C++ : gtopx( benchmark, f, g, x );
Python : [ f, g ] = gtopx( benchmark, x, o,n,m )
Matlab : [ f, g ] = gtopxmex( benchmark, x )

In above table, f denotes the objective function value(s), g
denotes the constraint function values, x denotes the vector of
decision variables and o, m and n denote their corresponding
dimensions. All GTOPX benchmark instances are thread-safe for
execution. This means that the GTOPX problems can be executed
in parallel, which is a highly desired feature in modern opti-
mization algorithm design. The GTOPX source code files are free
software and published under the GPL license [18].

The remainder of this paper is structured as follows. Section 2
describes each of the ten individual instances from Table 1 in
detail. Section 3 contains a comprehensive fitness landscape anal-
ysis of the GTOPX single objective benchmarks to provide a better
perception of a proper optimization algorithm selection. A brief
summary is given with some conclusive statements. This paper is
to provide researchers with a manual and reference to the GTOPX
benchmark software.

2. Software description

This section gives detailed information to the ten GTOPX
benchmark instances. Note that the definitions of the first seven
instances1 are taken from Schlueter [19], while the last three
instances are new.

2.1. Cassini1

The Cassini1 benchmark models an interplanetary space mis-
sion to Saturn. The objective of the mission is to get captured
by Saturn’s gravity into an orbit having a pericenter radius of
108,950 km and an eccentricity of 0.98. The sequence of fly-by
planets for this mission is given by Earth–Venus–Venus–Earth–
Jupiter–Saturn, whereas the first item is the start planet and the
last item is the final target. The objective function of this bench-
mark is to minimize the total velocity change ∆V accumulated
during the mission, including the launch and capture maneuver.
The benchmark involves six decision variables (see Table 2):

This benchmark further considers four constraints, which im-
pose an upper limit on the pericenters for the four fly-by maneu-
vers. The best known solution to this benchmark has an objective
function value of f (x) = 4.9307, and the respective vector of
solution decision variables x is available online [20].

1 Note that an individual benchmark problem is also called an instance in the
optimization community.
has been generalized, so that any problem instance can easily be
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able 2
escription of optimization variables for Cassini1.
Variable Description

1 Initial day measured from 1-Jan 2000
2∼6 Time interval between events (e.g. departure, fly-by, capture)

Table 3
Description of optimization variables for Cassini2.
Variable Description

1 Initial day measured from 1-Jan 2000
2 Initial excess hyperbolic speed (km/S)
3 Angles of the hyperbolic excess velocity (polar coordinate frame)
4 Angles of the hyperbolic excess velocity (polar coordinate frame)
5∼9 Time interval between events (e.g. departure, fly-by, capture)
10∼14 Fraction of the time interval after which DSM occurs
15∼18 Radius of flyby (in planet radii)
19∼22 Angle measured in B plane of the planet approach vector

Table 4
Description of optimization variables for Messenger (reduced).
Variable Description

1 Initial day measured from 1-Jan 2000
2 Initial excess hyperbolic speed (km/s)
3 Angles of the hyperbolic excess velocity (polar coordinate frame)
4 Angles of the hyperbolic excess velocity (polar coordinate frame)
5∼8 Time interval between events (e.g. departure, fly-by, capture)
9∼12 Fraction of the time interval after which DSM occurs
13∼15 Radius of fly-by (in planet radii)
16∼18 Angle measured in B plane of the planet approach vector

2.2. Cassini2

The Cassini2 benchmark models an interplanetary space mis-
ion to Saturn, including deep space maneuvers (DSM) and is
herefore considerably more difficult than its counterpart bench-
ark Cassini1. The sequence of fly-by planets for this mission

s given by Earth–Venus–Venus–Earth–Jupiter–Saturn, where the
irst item is the start planet and the last item is the final target.
he objective of this benchmark is again to minimize the total ∆V
ccumulated during the full mission; however, the aim here is a
endezvous, while in Cassini1 the aim is an orbit insertion. The
enchmark involves 22 decision variables (see Table 3):
The best known solution to this benchmark has an objective

unction value of f (x) = 8.3830, and the respective vector of
olution decision variables x is available online [20].

.3. Messenger (reduced)

This benchmark models an interplanetary space mission to
ercury and does not include resonant fly-bys at Mercury. The
equence of fly-by planets for this mission is given by Earth–
arth–Venus–Venus–Mercury, where the first item is the start
lanet and the last item is the final target. The objective of this
enchmark to be minimized is again the total ∆V accumulated
uring the mission. The benchmark involves 18 decision variables
see Table 4):

The best known solution to this benchmark has an objective
unction value of f (x) = 8.6299, and the respective vector of
olution decision variables x is available online [20].

.4. Messenger (full)

This benchmark models an interplanetary space mission to
ercury, including resonant fly-bys at Mercury. The sequence of

ly-by planets for this mission is given by Earth–Venus–Venus–
ercury–Mercury–Mercury–Mercury. The objective of this bench-
ark to be minimized is – as before – the total ∆V accumulated

Table 5
Description of optimization variables for Messenger (full).
Variable Description

1 Initial day measured from 1-Jan 2000
2 Initial excess hyperbolic speed (km/s)
3 Angles of the hyperbolic excess velocity (polar coordinate frame)
4 Angles of the hyperbolic excess velocity (polar coordinate frame)
5∼10 Time interval between events (e.g. departure, fly-by, capture)
11∼16 Fraction of the time interval after which DSM occurs
17∼21 Radius of fly-by (in planet radii)
22∼26 Angle measured in B plane of the planet approach vector

Table 6
Description of optimization variables for GTOC1.
Variable Description

1 Initial day measured from 1-Jan 2000
2∼8 Time interval between events (e.g. departure, fly-by, capture)

Table 7
Description of optimization variables for Rosetta.
Variable Description

1 Initial day measured from 1-Jan 2000
2 Initial excess hyperbolic speed (km/s)
3 Angles of the hyperbolic excess velocity (polar coordinate frame)
4 Angles of the hyperbolic excess velocity (polar coordinate frame)
5∼9 Time interval between events (e.g. departure, fly-by, capture)
10∼14 Fraction of the time interval after which DSM occurs
15∼18 Radius of fly-by (in planet radii)
19∼22 Angle measured in B plane of the planet approach vector

during the full mission. The benchmark involves 26 decision
variables (see Table 5):

The best known solution to this benchmark has an objective
function value of f (x) = 1.9579, and the vector of solution
decision variables x is available online [20].

2.5. GTOC1

This benchmark models a multi gravity assist space mission
to asteroid TW229. The mission model drew inspiration from the
first edition of the Global Trajectory Optimization Competition
(GTOC) held by ESA in 2007 [21]. The objective of the mission is
to maximize the change in the semi-major axis of the asteroid
orbit. The sequence of fly-by planets for this mission is given
by Earth–Venus–Earth–Venus–Earth–Jupiter–Saturn-TW229. This
benchmark involves eight decision variables (see Table 6):

This benchmark further considers four constraints, which im-
pose an upper limit on the pericenters for the four fly-by maneu-
vers. The best known solution to this benchmark has an objective
function value of f (x) = −1581950.0, and the vector of solution
decision variables x is available online [20].

2.6. Rosetta

The Rosetta benchmark models multi gravity assist space
mission to comet 67P/Churyumov-Gerasimenko, including deep
space maneuvers (DSM). The sequence of fly-by planets for this
mission is given by Earth–Earth–Mars–Earth–Earth-67P. The ob-
jective of this benchmark is to minimize the total ∆V accumu-
lated during the mission. The benchmark involves 22 decision
variables (see Table 7):

The best known solution to this benchmark has an objective
function value of f (x) = 1.3434, and the vector of solution

decision variables x is available online [20].

3



Martin Schlueter, Mehdi Neshat, Mohamed Wahib et al. SoftwareX 14 (2021) 100666

2

J
m
t
o

Fig. 1. Pareto front of Cassini1-MO.

Fig. 2. Pareto front of Cassini1-MO-MINLP.

.7. Sagas

This benchmark is described as a ∆V -EGA maneuver to fly-by
upiter and reach 50AU. The sequence of fly-by planets for this
ission is given by Earth–Earth–Jupiter, where the first item is

he start planet and the last item is the final planet. The objective
f this benchmark is to minimize the total ∆V accumulated

during the mission. The benchmark involves 12 decision variables
described in Table 8.

This benchmark further considers two constraints, which im-
pose an upper limit on the on-board fuel and launcher per-
formance. The best known solution to this benchmark has an

objective function value of f (x) = 18.1877, and the respective
vector of solution decision variables x is available online [20].

2.8. Cassini1-MINLP

This new benchmark is a mixed-integer extension of the
Cassini1 instance. While in the original Cassini1 instance the
sequence of fly-by planets is fixed as Venus–Venus–Earth–Jupiter,
the Cassini1-MINLP considers all four fly-by planets as discrete
decision variable. Each planet of the solar system (plus the dwarf
planet Pluto) is a feasible choice for any of the four fly-by planets.
Table 9 lists all possible choices for fly-by planets together with
4
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Fig. 3. Parallel coordinate plots of (a) Cassini1, (b) Cassini1-MINLP and (c) GTOC1. The color of each line corresponds to the objective function value f (x) given at the
ight side of each plot. Because all GTOPX benchmarks are to be minimized, a cold color (e.g. blue) indicates a better good solution, while a warm color (e.g. red)
ndicates a bad solution. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

able 8
escription of optimization variables for Sagas.
Variable Description

1 Initial day measured from 1-Jan 2000
2 Initial excess hyperbolic speed (km/s)
3 Angles of the hyperbolic excess velocity (polar coordinate frame)
4 Angles of the hyperbolic excess velocity (polar coordinate frame)
5∼6 Time interval between events (e.g. departure, fly-by, capture)
7∼8 Fraction of the time interval after which DSM occurs
9∼10 Radius of fly-by (in planet radii)
11∼12 Angle measured in B plane of the planet approach vector

Table 9
Possible choices of fly-by planets.
Value Planet

1 Mercury
2 Venus
3 Earth
4 Mars
5 Jupiter
6 Saturn
7 Uranus
8 Neptune
9 Pluto

their numerical value, to be used as variable for the GTOPX
solution vector x. Table 10 lists the ten decision variables.

The Cassini1-MINLP problem has been previously investigated
ith numerical results in Schlueter [22]. In that paper it was

revealed, that this benchmark has a strong local minimum cor-
responding to the fly-by planet sequence {Earth, Earth, Earth,
Jupiter}. This local minimum appeared to be the second best
solution (in regard to the combinatorial part) and holds an ob-
jective function value of f (x) = 3.6307. The best known solution
to Cassini1-MINLP has the fly-by planet sequence {Earth, Venus,
Earth, Jupiter} and corresponds to an objective function value of
f (x) = 3.5007.

The decisive nature of the above described local minima makes
the Cassini1-MINLP exceptionally hard to solve. It is therefore
noteworthy that the Cassini1 instance and the Cassini1-MINLP
instance are significantly different in their complexity and diffi-
culty.

Note that the technical modification in the source code of the
GTOP database, necessary to enable the integer choice of fly-by
planets, is given in the C++ function cassini1minlp. In such
function, the following original source code line:

sequence_[CASSINI_DIM] = {3,2,2,3,5,6}

is replaced with the following:

sequence_[CASSINI_DIM] = {3,x7,x8,x9,x10,6}

where the sequence elements x7,x8,x9,x10 represent the integer
variables. Note that the first and last entry in the above source
code sequence represent the start and target planet, which is in
this case Earth (→ start) and Saturn (→ target). Therefore the
first and last entry in the original sequence remain unaffected by

the above modification.

5
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Fig. 4. Parallel coordinate plots of (a) Cassini1-MINLP, (b) Sagas and (c) Messenger (reduced).

able 10
escription of optimization variables for Cassini1-MINLP.
Variable Description

1 Initial day measured from 1-Jan 2000
2∼6 Time interval between events (e.g. departure, fly-by, capture)
7∼10 fly-by planet (discrete value, see Table 9)

Table 11
Description of optimization variables for Cassini1-MO.
Variable Description

1 Initial day measured from 1-Jan 2000
2∼6 Time interval between events (e.g. departure, fly-by, capture)

2.9. Cassini1-MO

This benchmark is a multi-objective extension of the Cassini1
nstance. While in the original Cassini1 instance only one ob-
ective (the total ∆V ) was considered, the Cassini1-MO bench-
ark considers as the second objective the total time of flight

measured in days). The decision variables for Cassini1-MO are
dentical to the Cassini1 instance (see Table 11):

The Cassini1-MO has one more constraint than Cassini1. This
dditional constraint bounds the objective space to solutions with
first objective-function (Delta V [m/s]) value of f1(x) ≤ 7.0. This

additional constraint is introduced to focus the area of the Pareto
front to the truly challenging region of low fuel-consuming space
mission trajectories.

There is yet no comprehensive analysis conducted on this
benchmark, but an approximation of the Pareto front was ob-
tained by the MIDACO solver [23] and is displayed in Fig. 1. There,

the Pareto front of Cassini1-MO reveals a very distinctive non-
separated shape, exhibiting convex (right half of Fig. 1) as well as
non-convex (left half of Fig. 1) areas. The set of non-dominated
solutions is available online at [20] as a text file.

Note that while the benchmark definition allows feasible
points with f1(x) ≤ 7.0, there appears to exist only feasible
non-dominated solutions with a value of around f1(x) ≤ 6.7.

Note that in contrast to single-optimization, there does not
exist a commonly agreed on performance measure in multi-
objective optimization. Among the most widely used methods
to measure the performance in multi-objective optimization are
the hyper-volume (HV) indicator and the general and inverse
general distance (GD & IGD) indicators [24]. Thus the authors
provide only the raw data of the Pareto front approximation and
interested users must choose their own choice of multi-objective
performance measure in order to compare specific algorithms.

2.10. Cassini1-MO-MINLP

The Cassini1-MO-MINLP benchmark combines the previous
two extensions of Cassini1-MINLP and Cassini1-MO. This bench-
mark is therefore a multi-objective mixed-integer problem and
very challenging to solve. The decision variables are the same
as for Cassini1-MINLP, and the fly-by planet choices are listed in
Table 12:

As in Cassini1-MO, the first objective of Cassini1-MO-MINLP is
the total ∆V and the second objective is the total time of flight of
the space mission. Like the Cassini1-MO benchmark the Cassini1-
MO-MINLP has an additional constraint on the objective space.
However, in contrast to Cassini1-MO this benchmark bounds the
objective space to solutions with a first objective-function (Delta

V [m/s]) value of f1(x) ≤ 6.0 instead of a value of 7.0, as the

6
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Fig. 5. Parallel coordinate plots of (a) Cassini2, (b) Rosetta and (c) Messenger (full).

able 12
escription of optimization variables for Cassini1-MO-MINLP.
Variable Description

1 Initial day measured from 1-Jan 2000
2∼6 Time interval between events (e.g. departure, fly-by, capture)
7∼10 Fly-By planet (discrete value, see Table 9)

changed search space landscape allows for better solutions than
the Cassini1-MO benchmark.

The Pareto front (as approximated by the MIDACO solver
n [23], see Fig. 2) of Cassini1-MO reveals a distinctive separated
hape, where it is to note that the upper left part is mostly cor-
esponding to solutions with the best2 known integer sequence
hile the lower part is corresponding to the second best known

nteger sequence. The full set of non-dominated solutions is also
vailable online at [20] as a text file.

. Landscape analysis

Landscape analysis methods can be employed to character-
ze the features of fitness landscapes by representing the levels
f ruggedness, smoothness, multi-modality and neutrality [25].
haracteristics like these can be exploited by algorithm designers
n the construction of an algorithm, but also in an online fashion
y algorithms themselves. For example, when fitness values vary
ery little in a particular region (and the algorithm might be stuck
n a plateau), an optimization method can adjust its parameters

2 The best known integer sequence refers here to the value of the
orresponding first objective function value.

(like mutation step size) to generate candidates that are further
away from the current solutions.

In the following, we use two ways of characterizing the bench-
marks. First, we sample uniformly-at-random around the best-
known solutions in a way that is similar to those used by some
local search algorithms, and we do so with the goal of simulating
how a local search would perceive the area around the best
solutions — we use parallel coordinate plots for the visualization
due to the high dimensionality. Second, we use systematic grid
searches for a holistic picture of the entire problem — we use 3D
plots for the visualization.

First, we investigate the local sampling around the best tra-
jectories known. We sample the neighborhood in a way similar
to those employed by some local search approaches: (1) the
mutation probability of each individual value is 1

N , where N is
the number of decision variables, (2) we sample from a normal
distribution around the best-known solution with σi =

Ubi−Lbi
3 ,

where Ub and Lb are the upper and lower bounds of the ith
variable, and (3) we do so one million times.

In Figs. 3 to 5 (for the eight single-objective problems), the
columns represent the decision variables of the benchmarks, and
colored lines connect the values that belong to a solution vector.
The color denotes the respective solution quality: the most effi-
cient solutions are dark blue. The primary observation of Fig. 4
is that some variables play an important role in optimizing the
trajectory cost (∆V ), for instance X1 to X8 in Cassini2 (Fig. 5),
where small changes result in the decision variable can result in
large changes in the objective value. As another example, consider
the variable X3 in Cassini1 or the variable X5 in GTOC1, which
are highly sensitive. For practical approaches, this means that
they need to be able to focus differently on the different decision
variables.
7
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a

Fig. 6. Landscape analysis of GTOPX benchmarks using grid search: (a) Messenger (full), (b) Rosetta, (c) Messenger (reduced).

Next, we use a grid search that is a systematic approach with
very small step (mesh) size (µ = (Ub − Lb) ∗ 0.001) as a

sampling method across the entire search space. The grid search
provides a uniform and discrete sampling of the landscape. While
systematic, grid searches can be expensive landscape analysis
methods where the number of decision variables is high (curse of
dimensionality [26]) or the objective function is computationally
expensive. Hence, we limit ourselves to pairs of grid searches,
i.e. for each possible pair of decision variables.

Fig. 6 shows results for Messenger (full), Messenger (reduced)
and Rosetta. We can see a high level of ruggedness and a large

number of spikes in the landscapes. Based on this observed multi-
modality (i.e. multiple local optima), it might be worth consid-
ering optimization methods in the future such as niching tech-
niques [27], crowding [28], fitness sharing [29], species conserv-
ing [30] and covariance matrix adaptation [31].

As a side-effect of our grid search and of the local sampling, we
have found small improvements over the previously best known
solutions for the Rosetta benchmark. A new solution with a per-
centage change improvement of 0.00075% was found. Note that
in case of the GTOP benchmarks new solutions must traditionally
hold a percentage change improvement of at least 0.1% to be
considered significant. Nonetheless, other researchers (e.g. [7])
have published improvements below the 0.1% threshold and thus
8
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able 13
ew solutions for Rosetta.

Rosetta

Previous Best New solution
(grid search)

New solution
(local search)

x1 1542.802723 1542.802723 1542.802723
x2 4.478444171 4.478444171 4.478444171
x3 0.73169868 0.73169868 0.73169868
x4 0.878289696 0.878289696 0.878289696
x5 365.2423131 365.2423131 365.2423131
x6 707.7546444 707.7546444 707.7546444
x7 257.3238516 257.3238516 257.3238516
x8 730.4837236 730.4837236 730.4837236
x9 1850 1850 1850
x10 0.469187104 0.51018 0.512067
x11 0.810371727 0.810371727 0.810371727
x12 0.057240939 0.25119 0.2758878
x13 0.123333369 0.123333369 0.119192979
x14 0.436535683 0.436535683 0.43674223
x15 2.657626174 2.657626174 2.657626174
x16 1.05 1.05 1.05
x17 3.197806169 3.197806169 3.197806169
x18 1.056221792 1.056221792 1.056221792
x19 −1.253888118 −1.253888118 −1.253888118
x20 1.78760233 1.78760233 1.78760233
x21 −1.594671417 −1.594671417 −1.594671417
x22 −1.977325495 −1.977325495 −1.977325495
f(x) 1.34335206 1.34334453 1.34334419

such new solutions displayed here might be interesting to some
(see Table 13).

4. Impact

We present the GTOPX space mission benchmark software
ackage, available for C/C++, Matlab and Python. The benchmark
roblems in this package have been extensively tested in previous
ears, see for example [2–15]. See Code metadata table.

. Conclusions

With this article, we introduce an extended and refurbished
ersion of ESA’s well-known GTOP database. The new version,
alled GTOPX, includes three new benchmark instances featuring
ixed-integer and multi-objective properties. While the original
assini1 benchmark is clearly the easiest instance, its extensions
re more difficult to solve.
A simplified and user-friendly C/C++ source code base with

fficient numerical gateways into Python and Matlab make the
TOPX database an attractive choice for researchers wishing to
ut advanced optimization algorithms to the test. The important
eature of thread-safe function calls is provided for all GTOPX
enchmarks, allowing the parallel execution of these benchmark
unctions which is a highly desired feature for modern optimiza-
ion algorithms. We also provide a first fitness landscape analysis
f the single-objective GTOPX benchmarks to visually charac-
erize the relations among decision variables. Given the highly
on-linear nature of interplanetary space mission trajectories,
hich translates into the difficulty to solve these benchmarks, the
TOPX collection provides a challenge for years to come.
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