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Abstract

Two novel extensions for the well known Ant Colony Optimization (ACO) framework are
introduced here, which allow the solution of Mixed Integer Nonlinear Programs (MINLP). Fur-
thermore, a hybrid implementation (ACOmi) based on this extended ACO framework, specially
developed for complex non-convex MINLPs, is presented together with numerical results.

These extensions on the ACO framework have been developed to serve the needs of prac-
titioners who face highly non-convex and computationally costly MINLPs. The performance
of this new method is evaluated considering several non-convex MINLP benchmark problems
and one real-world application. The results obtained by our implementation substantiate the
success of this new approach.

Keywords: Ant Colony Optimization, MINLP, Global Optimization, Hybrid Metaheuristics,
Constrained Optimization, Oracle Penalty Method.

1 Introduction

The first optimization algorithms inspired by ants foraging behavior were introduced by Marco
Dorigo in his PhD thesis (Dorigo [12]). Later, these algorithms were formalized as the Ant Colony
Optimization (ACO) metaheuristic (Dorigo and Di Caro [13]). Originally the ACO metaheuristic
was considered only for combinatorial optimization problems (e.g. Travelling Salesman Problem,
Stützle and Dorigo [33]). In Bonabeau et al. [6] a general overview on ACO and its applications on
some scientific and engineering problems is given. An introduction to ACO together with recent
trends is given in Blum [4]. Comprehensive information on ACO can be found in Dorigo and
Stuetzle [14]

Several extensions of the ACO metaheuristic for continuous search domains can be found in the
literature, among them Socha and Dorigo [32], Yu et al. [36], Dreo and Siarry [15] or Kong and
Tian [27]. Other applications of ACO frameworks for real-world problems, arising from engineering
design applications, can be found in Jayaraman et al. [25], Rajesh et al. [29], Chunfeng and Xin
[10] or Zhang et al. [37]. In contrast extensions for mixed integer search domains are very rare
in the literature. In Socha [31] a general extension on continuous and mixed integer domains is
discussed.

1



Although a detailed explanation of an ACO algorithm design for continuous problems together
with numerical results is given in this reference, the application on mixed integer domains is only
mentioned theoretically. The proposed approach is a combination of a conventional ACO algorithm,
which is based on the concept of a pheromone table for discrete domains, with an extension for
continuous domains based on the use of pheromone controlled probability density functions. In
Serban and Sandou [30] a mixed integer programming method based on the ACO metaheuristic is
introduced especially for the unit commitment problem. Again this reference couples a conventional
pheromone table based ACO algorithm for discrete variables with an extension for continuous
variables.

This paper introduces a conceptual new extension of the ACO metaheuristic for mixed integer
search domains. In contrast to a pheromone table, a pheromone guided discretised probability
density function will be used for the discrete search domain. This approach allows an intuitive
handling of integer variables besides continuous ones within the same algorithm framework. Whilst
the above mentioned extensions of ACO on mixed integer domains can be seen as based on a discrete
ACO algorithm with an extension for continuous domains, our approach works the other way round.
Based on a continuous ACO methodology we extend the algorithm on discrete variables. This is
done by a heuristic, defining a lower bound for the standard deviation of the discretized Gaussian
probability function, which is assumed here as probability density function.

To apply the ACO metaheuristic on general MINLPs, not only we had to consider mixed integer
search domains, but also a good handling of arbitrary constraints. Here we propose a new penalty
strategy that reinforces this approach and which fits very well in the extended ACO metaheuristic.
Our method is based on a user-given oracle information, an estimated preferred objective function
value, which is used as the crucial parameter for the penalty function. A detailed investigation of
this approach is in preparation and the results seem to be promising. In particular the method
seems to be quite robust against ’bad’ selected oracles. Furthermore it can be shown analytically,
that a sufficiently large or sufficiently low oracle can be used as default parameters.

Our implementation, named ACOmi, is based on the ACO metaheuristic for continuous domains
presented by Socha and Dorigo [32] and enlarged by the above mentioned two novel heuristics. As
this implementation is a sophisticated one, aiming on the practical use of real-world applications,
several other heuristics (which will be briefly described in Section 5) are included and a mixed inte-
ger sequential quadratic programming algorithm is embedded as a local solver in the metaheuristic
framework. In addition a set of academic benchmark test problems, a complex MINLP applica-
tion, a thermal insulation system described in Abramson [1], is solved with this implementation to
fortify its practical relevance for real-world applications.

This paper is structured as follows: first, we give a brief overview on the state-of-the-art for solving
non-convex MINLPs. Next, we present our mixed integer extension to the ACO framework and
introduce a new penalty method in order to handle this class of problems. A detailed description of
our implementation ACOmi, incorporating this extended ACO framework and the penalty method,
is given. The performance of our approach is then evaluated considering (i) a set of MINLP
benchmark problems, and (ii) a complex engineering design problem formulated as a MINLP.
Finally, we present a set of conclusions.
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2 Approaches for non-convex Mixed Integer Nonlinear Pro-

grams

MINLPs are the most general type of single-objective optimization problems. Containing both
continuous and integer decision variables, and without any limitation to the complexity of either
the objective function or the constraints, these problems can be a real challenge. The presence
of nonlinearities in the objective and constraint functions might imply non-convexity in MINLP
problems, i.e. the potential existence of multiple local solutions.

Before giving an overview of the existing methodologies for such problems, the mathematical
formulation of a MINLP is given in (1).

Minimize f(x, y) (x ∈ R
ncon , y ∈ N

nint , ncon, nint ∈ N)

subject to: gi(x, y) = 0, i = 1, ...,meq ∈ N

gi(x, y) ≥ 0, i = meq + 1, ...,m ∈ N

xl ≤ x ≤ xu (xl, xu ∈ R
ncon)

yl ≤ y ≤ yu (yl, yu ∈ N
nint)

(1)

In this formulation f(x, y) is the objective function, which has to be minimized, depending on x, the
vector of ncon continuous decision variables, and y, the vector of nint integer decision variables.
The functions g1, ..., gmeq

represent the equality constraints and the functions gmeq+1, .., gm the
inequality constraints. The vectors xl, xu and yl, yu are the lower and upper bounds for the
decision variables x and y, those are also called box-constraints.

In principle two types of approaches are possible to solve this kind of problem: deterministic
and stochastic methods. So-called metaheuristics (Glover and Kochenberger [21]) often belong
to the latter. ACO can be classified as a stochastic metaheuristic. Modern algorithms, like the
one discussed in this paper, often combine both methodologies in a hybrid-manner, consisting of
a stochastic framework with deterministic strategies embedded. For example Egea et al. [17],
Chelouah and Siarry [9] or Chelouah and Siarry [8] follow also this hybrid framework approach.

Among the deterministic approaches for MINLPs, Branch and Bound techniques, Outer Approxi-
mation, General Benders Decomposition or extended Cutting Plane methods are the most common
ones. A comprehensive review on these can be found in Grossman [22]. The big advantage of deter-
ministic approaches is that a lot of these can guarantee global optimality. On the other hand this
guarantee comes with a disadvantage, the possibility of a tremendous computation time depending
on the problem structure. In addition, most of the implementations of these methods require a user
given formulation of the mathematical MINLP in an explicit way. In this case the implementation
is called a white box solver. In principle any implementation can gain the required information via
approximation by function evaluations from a black box formulation alternatively, but this does
highly increase the computational time effort.

In contrast to the white box approach, black box solvers do not require any knowledge of the
mathematical formulation of the optimization problem. Of course a mathematical formulation is
always essential to implement and tackle an optimization problem, but black box solvers do not
assimilate this formulation. This property makes them very flexible according to programming
languages and problem types, which is very much appreciated by practitioners. All metaheuristics
can be seen as black box solvers regarding their fundamental concept. In this paper an extension
of the ACO metaheuristic will be introduced to apply this method on general MINLPs. Besides
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academic benchmark MINLP test problems, one complex engineering application will be considered
and optimized with our ACO implementation.

3 The Ant Colony Optimization framework

To find food, biological ants start to explore the area around their nest randomly at first. If an ant
succeeds in finding a food source, it will return back to the nest, laying down a chemical pheromone
trail marking its path. This trail will attract other ants to follow it in the hope of finding food
again. Over time the pheromones will start to evaporate and therefore reduce the attraction of the
path, so only paths that are updated frequently with new pheromones remain attractive. Short
paths from the nest to a food source imply short marching times for the ants, so those paths are
updated with pheromones more often than long ones. Consequently more and more ants will be
attracted by the shorter paths with ongoing time. As a final result, a very short path will be
discovered by the ant colony.

This basic idea of ACO algorithms is to mimic this biological behavior with artificial ants ’walking’
on a graph, which represents a mathematical problem (e.g. Traveling Salesman Problem). An
optimal path in terms of length or some other cost-resource is requested in those problems, which
belong to the field of combinatorial optimization. By using a parametrized probabilistic model,
called pheromone table, the artificial ants choose a path through a completely connected Graph
G(C,L), where C is the set of vertices and L is the set of connections. The set C of vertices represent
the solution components, which every ant chooses incrementally to create a path. The pheromone
values within the pheromone table are used by the ants, to make these probabilistic decisions.
By updating the pheromone values according to information gained on the search domain, this
algorithmic procedure leads to very good and hopefully global optimal solutions, like the biological
counterpart.

Algorithm 1 ACO metaheuristic

while stopping criteria not met do

pheromone based solution construction
pheromone update
daemon actions

end while

The pseudo-code in Algorithm 1 illustrates this fundamental working procedure of the ACO meta-
heuristic. The stopping criteria and daemon actions are a choice of the algorithm designer. Com-
monly used stopping criteria are for example a maximal limit of constructed solutions or a maximal
time budget. Daemon actions might be any activity, that cannot be performed by single ants. Local
search activities and additional pheromone manipulations are examples for such daemon actions,
see Blum [5].

In contrast to the original ACO metaheuristic developed for combinatorial optimization problems,
the ACO framework considered in this paper is mainly based on the extended ACO for continuous
domains proposed by Socha and Dorigo [32]. The biological visualization of ants choosing their
way through a graph-like search domain does not hold any longer for these problems, as these
belong to a completely different class. However, the extension of the original ACO metaheuristic
to continuous domains is possible without any major conceptual change, see Socha [31]. In this
methodology, ACO works by the incremental construction of solutions regarding a probabilistic
choice according to a probability density function (PDF), instead of a pheromone table like in the
original ACO. In principle any function P (x) ≥ 0 for all x with the property:

∫ ∞

−∞
P (x) dx = 1 (2)

4



can act as a PDF. Among the most popular functions to be used as a PDF is the Gaussian function.
This function has some clear advantages like an easy implementation (e.g. Box and Müller [7])
and a corresponding fast sampling time of random numbers. On the other hand, a single Gaussian
function is only able to focus on one mean and therefore not able to describe situations where two
or more disjoint areas of the search domain are promising. To overcome this disadvantage by still
keeping track of the benefits of a Gaussian function, a PDF Gi(x) consisting of a weighted sum of
several one-dimensional Gaussian functions gi

l(x) is considered for every dimension i of the original
search domain:

Gi(x) =
k

∑

l=1

wi
l · gi

l(x) =
k

∑

l=1

wi
l

1

σi
l

√
2π

e
− (x−µi

l
)2

2 σi 2
l (3)

This function is characterized by the triplets (wi
l , σ

i
l , µ

i
l) that are given for every dimension i of

the search domain and the number of kernels k of Gauss functions used within Gi(x). Within this
triplet, w represents the weights for the individual Gaussian functions for the PDF, σ represents
the standard deviations, and µ represents the means for the corresponding Gaussian functions.
The indices i and l refer, respectively, to the i-th dimension of the decision vector of the MINLP
problem and the l-th kernel number of the individual Gaussian function within the PDF.

As that the above triplets fully characterize the PDF and therefore guide the sampled solution can-
didates throughout the search domain, they are called pheromones in the ACO sense and constitute
the biological background of the ACO metaheuristic presented here. Besides the incremental con-
struction of the solution candidates according to the PDF, the update of the pheromones plays a
major role in the ACO metaheuristic.

An obviously good choice to update the pheromones is the use of information, which has been
gained throughout the search process so far. This can be done by using a solution archive SA
in which the so far most promising solutions are saved. In case of k kernels this can be done
choosing an archive size of k. Thus the SA contains k n-dimensional solution vectors sl and the
corresponding k objective function values (see Socha [31]).

As the focus is here on constrained MINLPs, the solution archive SA also contains the correspond-
ing violation of the constraints and the penalty function value for every solution sl. In particular,
the attraction of a solution sl saved in the archive is measured regarding the penalty function
value instead of the objective function value. Details on the measurement of the violation and the
penalty function will be described in Section 4.

We now explain the update process for the pheromones which is directly connected to the update
process of the solution archive SA. The weights w (which indicate the importance of an ant and
therefore rank them) are calculated with a linear proportion according to the parameter k:

wi
l =

(k − l + 1)
∑k

j=1 j
(4)

With this fixed distribution of the weights, a linear order of priority within the solution archive SA
is established. Solutions sl with a low index l are preferred. Hence, s1 is the current best solution
found and therefore most important, while sk is the solution of the lowest interest, saved in SA.
Updating the solution archive will then directly imply a pheromone update based on best solutions
found so far. Every time a new solution (ant) is created and evaluated within a generation its
attraction (penalty function value) is compared to the attraction of the so far best solutions saved
in SA, starting with the very best solution s1 and ending up with the last one sk in the archive.
In case the new solution has a better attraction than the j-th one saved in the archive, the new

5



solution will be saved on the j-th position in SA, while all solutions formerly taking the j-th till
k− 1-th position will drop down one index in the archive and the solution formerly taking the last
k-th position is discarded at all. Of course, if the new solution has a worse than attraction as one
of sk, the solution archive remains unaffected. As it is explained in detail in the following, the
solutions saved in SA fully imply the deviations and means used for the PDF and imply therefore
the major part of the pheromone triplet (wi

l , σ
i
l , µ

i
l). This way updating the solution archive with

better solutions leads automatically a positive pheromone update. Note that a negative pheromone
update (evaporation) is indirectly performed as well by the dropping the last solution sk of SA
every time a new solution is introduced in the solution archive. Explicit pheromone evaporation
rules are known and can be found for example in Socha and Dorigo [32] but were not considered
here due to the implicit negative update and simplicity of the framework.

Standard deviations σ are calculated by exploiting the variety of solutions saved in SA. For every
dimension i the maximal and minimal distance between the single solution components si of the
k solutions saved in SA is calculated. Then the distance between these two values, divided by the
number of generations, defines the standard variation for every dimension i:

σi
l =

dismax(i) − dismin(i)

#generation

dismax(i) = max{|si
g − si

h| : g, h ∈ {1, ..., k}, g 6= h}
dismin(i) = min{|si

g − si
h| : g, h ∈ {1, ..., k}, g 6= h}

(5)

For all k single Gaussian functions within the PDF this deviation is then used regarding the
corresponding dimension i. The means µ are given directly by the single components of the
solutions saved in SA:

µi
l = si

l (6)

The incremental construction of a new ant works the following way: A mean µi
l is chosen first for

every dimension i . This choice is done respectively to the weights wi
l . According to the weights

defined in (4) and the identity of µi
l and si

l defined in (6), the mean µi
1 has the highest probability to

be chosen, while µi
k has the lowest probability to be chosen. Second, a random number is generated

by sampling around the selected mean µi
l using the deviation σi

l defined by (5). Proceeding like
this through all dimensions i = 1, ..., n then creates the new ant, which can be evaluated regarding
its objective function value and constraint violations in a next step.

So far, this algorithm framework does not differ from the one proposed by Socha [31], except that
here explicit rules for all pheromone parameters (wi

l , σ
i
l , µ

i
l) are given in (4), (5) and (6), while

Socha proposes those only for the deviations and means. It is to note that rules for the deviations
and means shown here were taken from Socha. The novel extension which enables the algorithm
to handle mixed integer search domains modifies the deviations σi

l used for the integer variables
and is described now in detail.

To handle integer variables besides the continuous ones, as it is described above, a discretization
of the continuous random numbers (sampled by the PDF) is necessary. The clear advantage
of this approach is the straight forward integration in the same framework described above. A
disadvantage is the missing flexibility in cases where for an integer dimension i all k solution
components si

1,...,k in SA share the same value. In this case the corresponding deviations σi
1,...,k are

zero regarding the formulation in (5). As a consequence, no further progress in these components
is possible, as the PDF would only sample the exact mean without any deviation.

Introducing a lower bound for the deviation of integer variables helps to overcome this disadvantage
and enables the ACO metaheuristic to handle integer and continuous variables simultaneously
without any major extension in the same framework. For a dimension i that corresponds to an
integer variable the deviations σi

l are calculated by:

σi
l = max

{

dismax(i) − dismin(i)

#generation
,

1

# generation
, (1 − 1√

nint

)/2

}

(7)
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With this definition the deviations according to the corresponding Gaussian functions for integer
variables will never fall under a fixed lower bound of (1 − 1√

nint
)/2, determined by the number

of integer variables nint considered in the MINLP problem formulation. For MINLP with a large
amount of integers, this lower bound converges toward 0.5 and ensures therefore a deviation that
hopefully keeps the algorithm flexible enough to find its way through the (large) mixed integer
search domain. A small number of integer variables leads to a smaller lower bound, whilst for only
one integer variable this bound is actually zero. In case of a small amount of integer variables in the
MINLP it is reasonable to think that at some point of the search progress the optimal combination
of integers is found and therefore no further searching with a wide deviation is necessary for the
integer variables. But even in case of only one integer variable, with a corresponding absolute
lower bound of zero, the middle term ( 1

#generation ) in (7) ensures a not too fast convergence of the

deviation. Therefore, the calculation of the standard deviation σ for integer variables by (7) seems
to be a reasonable choice and is confirmed by the numerical results.

4 Penalty method

Penalty methods are well known strategies to handle constraints in optimization problems. By
replacing the original objective function by a penalty function which is a weighted sum (or product)
of the original objective function and the constraint violations, the constrained problem can be
transformed into an unconstrained one. The penalty function acts therefore as a new objective
function which might also be called a cost function. A wide range of modifications of this method
is known and comprehensive reviews can be found in Coello [11] or Yeniay [35]. In general it
is to note, that simple penalty methods (e.g. death or static, see Yeniay [35]) do not require
a lot of problem specific parameters to be selected, which makes their use and implementation
very easy and popular. This advantage of simple penalty methods comes with the drawback,
that for especially challenging problems these are often not capable to gain sufficient performance.
Sophisticated penalty methods (e.g. adaptive or annealing, see Yeniay [35]) are more powerful
and adjustable to a specific problem due to a larger number of parameters. However, this greater
potential implies an additional optimization task for a specific problem: the sufficiently good
selection of a large set of parameters. A high potential penalty method, that requires none or only
a few parameters to be selected, is therefore an interesting approach.

4.1 Robust oracle penalty method

We present a general penalty method based on only one parameter, named Ω, which is selected
best equivalent or just slightly greater than the optimal (feasible) objective function value for a
given problem. As for most real-world problems this value is unknown a priori, the user has to
guess this parameter Ω at first. After an optimization test run, the quality of the chosen parameter
can be directly compared to the truly reached solution value. Due to this predictive nature of the
parameter it is called an oracle. Despite this illustrative and clear meaning of the oracle parameter,
it is important, that the method performs satisfactory even for bad or unreasonable choices of Ω, to
apply it to real-world problems. Indeed the method is constructed this way and numerical results
fortify the robustness of it. A detailed investigation of the development, properties and robustness
of the method is currently in preparation and would go beyond the scope here. Therefore only the
essential mathematical formulation together with a brief description, a graphical illustration and
a general update rule for the oracle parameter will be given here.

The oracle method works with a Norm-function over all violations of the m constraints of an
optimization problem (1); this function is called a residual. Commonly used Norm-functions are
the l1, l2 or l∞ Norm, here we assume the l1 Norm as residual (see (8)). To simplify the notation
of the robust oracle method, we denote here with z := (x, y) the vector of all decision variables
without explicit respect to x and y, which are the vectors of continuous and integer variables in the
MINLP (1) formulation. Such a vector z is called an iterate in the following due to the generality
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of the method. In case of ACO z represents an ant.

res(z) =

meq
∑

i=1

|gi(z)| −
m

∑

i=meq+1

min{0, gi(z)} (8)

where g1,...,meq
denote the equality constraints and gmeq+1,...,m the inequality constraints. The

penalty function p(z) is then calculated by:

p(z) =







α · |f(z) − Ω| + (1 − α) · res(z) − β , if f(z) > Ω or res(z) > 0

−|f(z) − Ω| , if f(z) ≤ Ω and res(z) = 0
(9)

where α is given by:

α =































































|f(z)−Ω|· 6
√

3−2

6
√

3
−res(z)

|f(z)−Ω|−res(z) , if f(z) > Ω and res(z) < |f(z)−Ω|
3

1 − 1

2
√

|f(z)−Ω|
res(z)

, if f(z) > Ω and |f(z)−Ω|
3 ≤ res(z) ≤ |f(z) − Ω|

1
2

√

|f(z)−Ω|
res(z) , if f(z) > Ω and res(z) > |f(z) − Ω|

0 , if f(z) ≤ Ω

(10)

and β by:

β =















|f(z)−Ω|· 6
√

3−2

6
√

3

1+ 1√
#generation

· (1 − 3 res(z)
|f(z)−Ω| ) , if f(z) > Ω and res(z) < |f(z)−Ω|

3

0 , else

(11)

Before a brief motivation of the single components of the penalty method is given, a graphical
illustration of the penalty function values p(z) regarding different objective and residual function
values for a given oracle parameter Ω and a fixed number of generations is given below. Figure 1
shows the three dimensional shape of the penalty function according to the first and the hundredth
generation with an oracle parameter equal to zero, for residual function values in the range from
zero to ten and for objective function values in the range from minus ten to ten. It is important to
note, that the shape of the penalty function is not affected at all by the oracle parameter. A lower
or greater oracle parameter than zero results only in a movement to the left or right respectively
on the axis representing the objective function value.
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Figure 1: Three dimensional shape of the robust oracle penalty method for Ω = 0 and
#generation = 1 (left) and #generation = 100 (right).

Now a brief motivation of the single components of the penalty method is given. The penalty
function p(z) defined in (9) is split into two cases. The appearance of the penalty function in case
f(z) > Ω and res(z) > 0 is similar to common ones, where a parameter α balances the weight
between the objective function and the residual and an additional β term acts as a bias. In case
f(z) ≤ Ω and res(z) = 0 the penalty function p(z) is defined as the negative distance between the
objective function value f(z) and the oracle parameter Ω. In this case, the resulting penalty values
will be zero or negative. This case corresponds with the front left sides (res = 0 and f(z) ≤ Ω)
of the 3D shapes shown in Figure 1, which are formed as a vertical triangular. In case f ≤ Ω and
res(z) > 0 both, the α and β term, are zero. According to (9) this implies, that the penalty value
p(z) is equal to the residual value res(z). This case corresponds with the left sides (f(z) ≤ Ω) of
the two 3D shapes shown in Figure 1, which are formed as a beveled plane.

The two middle terms 1 − 1

2
√

|f(z)−Ω|
res(z)

and 1
2

√

|f(z)−Ω|
res(z) in the definition of α are the major

components of the oracle penalty method. In case f(z) > Ω those are active in α and used
respectively to the residual value res(z). If res(z) > |f(z) − Ω| the latter one is active and
results in a value of α < 1

2 , which will increase the weight on the residual in the penalty function
p(z). Otherwise, if res(z) ≤ |f(z) − Ω|, the first one is active and results in a value of α ≥ 1

2 ,
which will increase the weight on the objective function regarding to (9). Therefore these two
components enable the penalty method to balance the search process, respectively to either the
objective function value or the residual. This balancing finds it representation in the nonlinear
shapes of the upper right sides (f(z) > Ω) of the two 3D shapes shown in Figure 1.

A special case occurs if f(z) > Ω and res(z) < |f(z)−Ω|
3 , in this case the very first term in the

definition of α and the β term is active. This is done, because otherwise the second term in

the definition of α would lead to a worser penalization of iterates with res(z) < |f(z)−Ω|
3 than

those with res(z) = |f(z)−Ω|
3 (a detailed explanation goes beyond the scope here). As this is

seen as a negative effect regarding the robustness of the method, because feasible solutions with

res(z) = 0 < |f(z)−Ω|
3 would be penalized worse than infeasible ones, the very first term of α is

activated in this case. The very first term in α implies an equal penalization p(z) of all iterates

sharing the same objective function value f(z) > Ω and a residual between zero and |f(z)−Ω|
3 ,

not taking the β term in definition (9) into account. The β term goes one step further and

biases the penalization of iterates with a smaller residual than |f(z)−Ω|
3 better than those with

res(z) = |f(z)−Ω|
3 . Moreover this bias will increase with ongoing algorithm process, as the number
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of generations influence the β term. The front right sides (f(z) > Ω) of the two 3D shapes shown
in Figure 1 correspond to this special case, those are formed as a triangular. In case of the left
subfigure in Figure 1, which corresponds to a generation number of 1, the biasing effect is not as
strong as in case of the right subfigure, which corresponds to a generation number of 100. It is to
note, that this dynamic bias, caused by the β term in definition (9), is the only difference between
the two 3D shapes shown in Figure 1.

4.2 Oracle update rule

For most real-world problems the global optimal (feasible) objective function value is unknown a
priori. As the oracle parameter Ω is selected best, equal or just slightly greater than the optimal
objective function value, finding a sufficiently good oracle and solving the original problem to the
global optimum goes hand in hand. This self-tuning effect of the method is easy to exploit if
several optimization test runs are performed. Each time an optimization test run using a specific
oracle has finished, the obtained solution objective and residual function values directly deliver
information about an appropriate oracle update.

Numerical tests show that the oracle method is quite robust against overestimated oracles. Un-
derestimated oracles tend to deliver feasible points that are close to but not exactly the global
optimal objective function value. Based on those results the following update rule was deduced
and is intended to apply, if for a given problem absolutely no information is available and a possible
optimal objective function value. The oracle for the very first run should be selected sufficiently
low (in Table 1 designated as −∞, e.g. −1012), in this case the robust oracle method follows a
dynamic penalty strategy. The hope is to find a feasible point, which is already close to the global
optimum. If the first run succeeded in finding a feasible solution, the oracle will be updated with
this solution and from now on only feasible and lower solutions will be used to further update
the oracle. In case the first run did not deliver any feasible point, the oracle should be selected
sufficiently large (in Table 1 designated as ∞, e.g. 1012. With this parameter the method will
completely focus on finding a feasible solution at first (see the flat shape in Figure 1 for f(z) < Ω
and res(z) > 0) and will then switch to a death strategy (see the spike shape in Figure 1 for
f(z) < Ω and res(z) = 0) as soon as a feasible solution is found.

Table 1: Update rule for the oracle throughout several optimization test runs
Ωi Oracle used for the i-th optimization test run
f i Obj-function value obtained by the i-th test run
resi Residual function value corresponding to f i

Ω1 = −∞ (sufficiently low) Initialization with dynamic strategy

Ω2 =

{

f1 ,if res1 = 0
∞ (sufficiently high) ,else

Update with solution if f1 is feasible,

static & death strategy if f1 is infeasible

Ωi =

{

f i−1 ,if resi−1 = 0 and f i−1 < Ωi−1

Ωi−1 ,else
Update Ωi only with feasible (resi−1 = 0) and

better (f i−1 < Ωi−1 = {f i−2 ∨∞}) solutions

5 Extended ACO implementation

In this section more detailed information about our implementation ACOmi is provided. This imple-
mentation follows strictly the extended Ant Colony Optimization framework described in Section
3. For unconstrained problems the fitness (or attraction) of an ants is measured by the objective
function value while for constrained problems the penalty function value (see Section 4) is used as
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fitness criteria. Even so this implementation is already capable to handle any kind of MINLP prob-
lem; it is additionally hybridized with a mixed integer sequential quadratic programming (MISQP)
algorithm by Exler and Schittkowski [19]. This subroutine acts as a local solver within the ACO
framework to increase the overall performance of ACOmi.

Algorithm 2 gives a pseudo code description of ACOmi. A maximal budget of fitness function
evaluations or the achievement of a (feasible) solution value lower or equal to a specific objective
function value fex is used as stopping criteria. Note, that the value fex is used purely as a stopping
criteria and does not correspond to the oracle parameter Ω within the algorithm. The extended
ACO algorithm requires two parameters to be selected (npop and k). For constrained problems the
oracle parameter Ω must be provided to apply the penalty method.

To investigate the performance of ACOmi with and without the local solver, the use of MISQP is
designed in ACOmi as an optional choice. Furthermore two different hybridization options (option1
and option2) are considered. In case option1 is activated, the local solver will be called after every
generation, using the currently best found solution as initial point. In case option2 is activated, the
local solver will be called only one time after the last but one generation, using the currently best
found solution as initial point. This is done after the last but one generation, so to not exceed the
maximal number of function evaluations. Even though small violations of this budget are possible,
the number of function evaluations required by MISQP can not be known in advance.

Algorithm 2 ACOmi

select maximal number of function evaluations: evalmax

select objective function value to be reached: fex
——————————————————————————————————–
select population size: npop

select number of PDF kernels: k
select oracle: Ω (for constrained problems)
——————————————————————————————————–
option1: run local solver after every generation (Yes/No)
option2: run local solver after the last but one generation (Yes/No)
——————————————————————————————————–
initialize solution archive SA of size k (empty)
initialize pheromones (randomly)
——————————————————————————————————–
while stopping criteria not met do

for i from 1 to npop do

construct ant ai regarding pheromones
evaluate fitness of ant ai

update solution archive with ant ai

end for

update pheromones according to SA
if option1 then

run local solver MISQP
end if

if option2 then

run local solver MISQP
end if

end while

Note, that it is possible to submit a starting solution to ACOmi as it is done for the numerical
results in Section 6. This solution will be treated like any other ant during the first generation of
ants, which are created according to the initially (randomly) selected pheromones. Based on the
comparison of the fitness function value of the starting solution and the fitness of the other ants,
it will be introduced in the solution archive SA or not.
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6 Numerical Results

We evaluate the performance of our implementation ACOmi using (i) a set of 26 MINLP benchmark
problems, and (ii) an engineering design problem arising from a thermal insulation system. Re-
garding the parameter setting of ACOmi Table 2 presents the default values which are based only on
experimental experience. Those were applied on all numerical test runs of ACOmi presented in this
paper. All test problems discussed in this paper are constrained, therefore the penalty function
described in Section 4 acts as fitness criteria in ACOmi (see Section 5). As several test runs are
performed on the problems, the oracle update rule (see Table 1) is applied.

Table 2: Default parameter setting of ACOmi
parameter value explanation reference
npop 150 number of ants Section 5
k 15 number of kernels = size of SA Section 3
Ω updated oracle parameter for penalty function Table 1

To compare the performance of our implementation, a mixed integer tabu-search implementation
(MITS) by Exler et al. [18] and a mixed integer sequential programming (MISQP) implementation
by Exler and Schittkowski [19] are considered as well. It is to note that the latter is a deterministic
local solver which both implementations, MITS and ACOmi, are hybridized with. Furthermore
MISQP as a local solver is not intended for the global optimization of non-convex optimization
problems, like the ones considered in the following. To still be able to compare the performance
of MISQP, a fitness function evaluation limited multistart of MISQP with random initial points is
considered here as concurrent method to MITS and ACOmi.

Of special interest to the reader might be the performance of ACOmi with and without the use of
the local solver. Therefore three different ACOmi setups regarding the use of MISQP are considered
for the numerical tests, those setups are described in Table 3. The first setup (ACOmi1) is the
pure ACO algorithm without any local solver activity. The second setup (ACOmi2) calls MISQP
after every generation which implies a massive exploitation of the hybridization. The third setup
(ACOmi3) calls the local solver only one time at the very end of the search process, when the
maximal limit of function evaluations is nearly reached (after the one but last ACO generation).
MISQP is always started with the currently best solution found by ACOmi as starting point. An
additional setup of MITS without the local solver would have been interesting to compare the
results with those of ACOmi1. Unfortunately the local solver is not an optional choice in MITS and
can not be deactivated.

Table 3: Different ACOmi setups regarding the local solver
setup option activated explanation
ACOmi1: option1 No run MISQP after every generation

option2 No run MISQP after the last but one generation
ACOmi2: option1 Yes run MISQP after every generation

option2 No run MISQP after the last but one generation
ACOmi3: option1 No run MISQP after every generation

option2 Yes run MISQP after the last but one generation

6.1 MINLP Benchmark problems

A set of 26 MINLPs benchmark problems from the open literature is considered in this section.
As this paper is focused on global optimization of non-convex problems in general, we selected
problems with a high level of non-convexity in order to check if our method was able to deal with
the likely multimodal search domain. For each problem on this selection a frequency histogram,
obtained by multistart executions of a local solver from random initial points (see Section 6.2 for
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an example), was performed. The profiles of these histograms illustrated the multimodality of each
problem. Problems with a highly multimodal search domain are marked with an * in Table 5 and
are therefore considered more difficult to solve. Problems without an * are either convex (thus
unimodal), or contain only a small number of local optima. Besides the specific problem name,
Table 5 also lists the number and type of decision variables and constraints, and the best known
objective function value for every problem. Table 4 explains the used abbreviations in Table 5 in
detail.

Table 4: Abbreviations for Table 5
abbreviation explanation
name problem name used in the literature
ref literature reference
ncon number of continuous variables
nint number of integer variables (without binary ones)
nbin number of binary variables
meq number of equality constraints
m number of constraints in total
fex best known objective function value

Table 5: MINLP Benchmark problems
name ref ncon nint nbin meq m fex
mitp1 [19] 2 3 0 0 1 -10009.69
mitp3 [19] 2 0 3 0 7 3.5
van de braak 1 [19] 4 3 0 0 2 1
van de braak 2* [19] 4 3 0 0 4 -2.718281
van de braak 3* [19] 4 3 0 0 4 -89.8
gear [19] 4 4 0 4 4 1
asaadi 1.1 [3] 1 3 0 0 3 -40.956609
asaadi 2.1 [3] 3 4 0 0 4 694.903
asaadi 3.1 [3] 4 6 0 0 8 37.21954
tp83 [24] 3 2 0 0 6 -30665.5386
wp02 [34] 1 1 0 0 2 -2.444
nvs08* [23] 1 2 0 0 3 23.44973
nvs14 [23] 3 5 0 3 3 -40358.15
nvs20* [23] 11 5 0 0 8 195.310251
duran/grossmann 1 [16] 3 0 3 0 6 6.0097418
duran/grossmann 2 [16] 6 0 5 1 14 0.73035665
duran/grossmann 3 [16] 9 0 8 2 23 68.01
floudas 1 [20] 2 0 3 2 5 7.6671801
floudas 2 [20] 2 0 1 0 3 1.07654
floudas 3* [20] 3 0 4 0 9 4.5795825
floudas 4* [20] 3 0 8 3 7 -0.96156973
floudas 6* [20] 1 1 0 0 3 -17
floudas/pardalos 3.3* [20] 3 3 0 0 6 -310
windfac* [28] 11 3 0 13 13 0.25449
batch* [28] 22 0 24 0 81 285507
optprloc [28] 5 0 25 0 29 -8.0641362

The results obtained by MITS, the MISQP multistart and the ACOmi setups for all the problems
are listed in Table 7. All problems were solved 30 times each with a maximal budget of 10000
fitness function evaluations. Besides the maximal evaluation budget evalmax the achievement of
the best known objective function value fex was applied as stopping criteria in ACOmi, MITS
and the MISQP multistart. A moderate precision of 10−4 regarding the l1 Norm of all constraint
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violations and the objective function value was claimed. Even so higher precisions can be easily
obtained by the deterministic MISQP routine, the ACOmi setup ACOmi1 without any local solver is
a pure stochastic algorithm, which might require a large amount of function evaluations to achieve
solutions with higher precision.

For every test run of every problem a random point was created and submitted to all solvers as
starting point. This procedure ensures a fair competition between the MITS, the MISQP multistart
and the ACOmi setups. All results for the MINLP benchmark problems can be found in Table 7,
Table 6 explains the abbreviations used in Table 7.

Table 6: Abbreviations for Table 7
abbreviation explanation
name problem name used in the literature
solver solver corresponding to the line of results
feasible number of feasible solutions found out of 30 test runs
optimal number of optimal solutions found out of 30 test runs
fbest best (feasible) objective function value found out of 30 test runs
fworst worst (feasible) objective function value found out of 30 test runs
fmean mean objective function value over all runs with a feasible solution
timemean mean cpu-time over all runs with a feasible solution
evalmean mean number of evaluations over all runs with a feasible solution
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Table 7: Results for the MINLP Benchmark problems
name solver feasible optimal fbest fworst fmean evalmean timemean

mitp1 ACOmi1 30 30 -10010 -10010 -10010 1641 0.45
ACOmi2 30 30 -10010 -10010 -10010 525 0.11
ACOmi3 30 30 -10010 -10010 -10010 1656 0.44
MISQP 30 30 -10010 -10010 -10010 330 0.05
MITS 30 30 -10010 -10010 -10010 296 0.08

mitp3 ACOmi1 30 27 3.4998 4.9997 3.6023 3196 0.77
ACOmi2 30 30 3.5 3.5 3.5 345 0.08
ACOmi3 30 30 3.4998 3.5001 3.5 3145 0.76
MISQP 30 30 3.5 3.5 3.5 43 0.01
MITS 30 30 3.5 3.5 3.5 44 0.02

van de ACOmi1 30 29 1 1.0092 1.0004 4041 1.13
braak 1 ACOmi2 30 30 1 1.0001 1 1008 0.17

ACOmi3 30 30 1 1.0001 1.0001 4268 1.18
MISQP 30 30 1 1 1 379 0.05
MITS 30 30 1 1.0001 1 779 0.18

van de ACOmi1 30 0 9517.3 2.0078e+006 8.4065e+005 10051 2.67
braak 2 ACOmi2 30 1 -2.7183 2.2778e+006 7.5726e+005 9775 2.47

ACOmi3 30 1 -2.7182 1.9441e+006 6.7533e+005 9947 2.58
MISQP 30 29 -2.7183 -1 -2.661 2827 0.74
MITS 30 30 -2.7183 -2.7182 -2.7183 813 0.31

van de ACOmi1 30 21 -89.8 42.147 -85.213 4816 1.34
braak 3 ACOmi2 30 29 -89.8 -41.639 -88.195 1781 0.39

ACOmi3 30 29 -89.8 -47.599 -88.393 4289 1.24
MISQP 30 30 -89.8 -89.8 -89.8 1449 0.20
MITS 30 26 -89.8 -89.799 -89.8 996 0.23

gear ACOmi1 29 0 1.0696 2.5203 1.7532 10051 2.92
ACOmi2 30 30 1 1.0001 1 506 0.14
ACOmi3 30 30 1 1.0001 1 10057 2.92
MISQP 30 30 1 1 1 214 0.04
MITS 30 30 1 1.0001 1 155 0.05

asaadi 1.1 ACOmi1 30 30 -40.958 -40.957 -40.957 1371 0.34
ACOmi2 30 30 -40.958 -40.957 -40.957 389 0.08
ACOmi3 30 30 -40.958 -40.957 -40.957 1301 0.32
MISQP 30 30 -40.958 -40.958 -40.958 98 0.02
MITS 30 30 -40.958 -40.957 -40.957 91 0.03

(continued)
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name solver feasible optimal fbest fworst fmean evalmean timemean

asaadi 2.1 ACOmi1 30 30 694.9 694.9 694.9 1626 0.46
ACOmi2 30 30 694.9 694.9 694.9 615 0.13
ACOmi3 30 30 694.9 694.9 694.9 1681 0.47
MISQP 30 30 694.9 694.9 694.9 501 0.08
MITS 30 30 694.9 694.9 694.9 314 0.11

asaadi 3.1 ACOmi1 30 24 37.219 40.534 37.854 5306 1.67
ACOmi2 30 30 37.219 37.219 37.219 762 0.22
ACOmi3 30 28 37.219 40.347 37.428 4717 1.49
MISQP 30 30 37.219 37.219 37.219 333 0.08
MITS 30 30 37.219 37.219 37.219 317 0.11

tp83 ACOmi1 30 27 -30666 -29924 -30636 3371 0.86
ACOmi2 30 30 -30666 -30666 -30666 346 0.08
ACOmi3 30 30 -30666 -30666 -30666 2807 0.71
MISQP 30 30 -30666 -30666 -30666 62 0.01
MITS 30 30 -30666 -30666 -30666 62 0.02

wp02 ACOmi1 30 30 -2.4444 -2.4443 -2.4444 256 0.06
ACOmi2 30 30 -2.4444 -2.4443 -2.4444 270 0.06
ACOmi3 30 30 -2.4444 -2.4444 -2.4444 291 0.07
MISQP 30 30 -2.4444 -2.4444 -2.4444 43 0.01
MITS 30 30 -2.4444 -2.4444 -2.4444 63 0.02

nvs08 ACOmi1 30 30 23.45 23.45 23.45 2051 0.49
ACOmi2 30 28 23.45 23.828 23.475 1180 0.25
ACOmi3 30 28 23.45 23.828 23.475 2554 0.60
MISQP 30 30 23.45 23.45 23.45 161 0.02
MITS 30 27 23.45 23.45 23.45 226 0.06

nvs14 ACOmi1 14 2 -40358 -31672 -38636 9644 2.80
ACOmi2 30 30 -40358 -40358 -40358 689 0.18
ACOmi3 30 29 -40358 -40256 -40355 9194 2.46
MISQP 30 30 -40358 -40358 -40358 694 0.13
MITS 30 30 -40358 -40358 -40358 352 0.11

nvs20 ACOmi1 30 0 196.48 3106.9 950.75 10051 3.54
ACOmi2 30 30 195.31 195.31 195.31 4489 1.08
ACOmi3 30 28 195.31 195.78 195.33 11276 3.88
MISQP 30 30 195.31 195.31 195.31 1124 0.22
MITS 30 30 195.31 195.31 195.31 2380 0.74

duran/ ACOmi1 30 28 6.0084 9.1796 6.1157 2971 0.83
grossmann 1 ACOmi2 30 29 6.0094 7.0925 6.0457 990 0.23

ACOmi3 30 27 6.0084 7.0926 6.1175 3240 0.90
MISQP 30 30 6.0095 6.0098 6.0097 507 0.08
MITS 30 30 6.0094 6.0098 6.0097 173 0.05

duran/ ACOmi1 7 0 75.043 99.208 83.685 10051 3.45
grossmann 2 ACOmi2 23 23 73.035 73.035 73.035 1069 0.39

ACOmi3 11 11 73.035 73.035 73.035 10195 3.38
MISQP 30 30 73.035 73.035 73.035 453 0.10
MITS 29 29 73.034 73.034 73.034 572 0.18

duran/ ACOmi1 6 0 78.109 88.669 82.931 10051 3.89
grossmann 3 ACOmi2 30 30 68.009 68.01 68.01 1262 0.78

ACOmi3 15 12 68.01 77.104 69.397 10482 4.16
MISQP 30 30 68.01 68.01 68.01 515 0.20
MITS 30 30 68.008 68.008 68.008 616 0.50

floudas 1 ACOmi1 0 0 na na na na na
ACOmi2 30 30 7.6672 7.6672 7.6672 363 0.09
ACOmi3 30 30 7.6672 7.6672 7.6672 9963 2.86
MISQP 30 30 7.6672 7.6672 7.6672 235 0.04
MITS 30 30 7.6672 7.6672 7.6672 248 0.07

(continued)
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name solver feasible optimal fbest fworst fmean evalmean timemean

floudas 2 ACOmi1 30 0 1.103 1.35 1.2483 10051 2.62
ACOmi2 30 18 1.0765 1.25 1.1459 4250 1.10
ACOmi3 30 10 1.0765 1.25 1.1922 9822 2.50
MISQP 30 30 1.0765 1.0765 1.0765 53 0.01
MITS 30 30 1.0765 1.0766 1.0765 59 0.02

floudas 3 ACOmi1 30 22 4.5793 5.8138 4.8929 5976 1.79
ACOmi2 30 30 4.5796 4.5796 4.5796 731 0.99
ACOmi3 30 30 4.5794 4.5797 4.5795 6999 2.06
MISQP 30 30 4.5795 4.5796 4.5796 1617 6.12
MITS 30 29 4.5795 6.5574 4.6455 2864 5.05

floudas 4 ACOmi1 28 0 -0.7641 -5.4612e-005 -0.051609 10051 3.24
ACOmi2 30 1 -0.96157 -0.9532 -0.95348 9813 2.91
ACOmi3 30 0 -0.9532 -3.3434e-006 -0.91512 10227 3.34
MISQP 30 19 -0.96157 -0.9532 -0.9585 6513 2.21
MITS 30 30 -0.96157 -0.96157 -0.96157 1173 0.48

floudas 6 ACOmi1 30 30 -17 -17 -17 956 0.24
ACOmi2 30 30 -17 -17 -17 307 0.08
ACOmi3 30 30 -17 -17 -17 981 0.25
MISQP 30 30 -17 -17 -17 9 0.00
MITS 30 30 -17 -17 -17 31 0.01

floudas/ ACOmi1 30 7 -310.01 -121.93 -272.77 8356 2.31
pardalos ACOmi2 30 26 -310 -298 -308.4 2219 0.58
3.3 ACOmi3 30 25 -310.01 -298 -308 6656 1.82

MISQP 30 30 -310 -310 -310 440 0.06
MITS 30 30 -310 -310 -310 1321 0.33

windfac ACOmi1 0 0 na na na na na
ACOmi2 30 24 0.25448 0.42881 0.28736 4037 1.08
ACOmi3 29 14 0.25441 0.75 0.34117 10203 3.44
MISQP 29 17 0.25448 0.75 0.32523 6894 2.70
MITS 30 18 0.25439 0.74985 0.31928 7241 4.10

batch ACOmi1 0 0 na na na na na
ACOmi2 25 21 2.8551e+005 3.4673e+005 2.9019e+005 5333 24.89
ACOmi3 8 3 2.8551e+005 3.0569e+005 2.9269e+005 11457 33.42
MISQP 21 17 2.8551e+005 3.8248e+005 2.9033e+005 7124 23.00
MITS 29 29 2.8551e+005 2.8551e+005 2.8551e+005 5367 16.81

optprloc ACOmi1 10 0 -5.9625 0.37749 -2.9912 10051 19.48
ACOmi2 30 30 -8.0641 -8.0641 -8.0641 1176 4.47
ACOmi3 30 29 -8.0641 -7.9152 -8.0592 10713 22.28
MISQP 30 30 -8.0641 -8.0641 -8.0641 1123 4.50
MITS 30 30 -8.0641 -8.0641 -8.0641 850 3.06

To illustrate the results achieved by MITS, the MISQP multistart and the ACOmi setups in a very
compact way, we present a performance profile based on the number of fitness function evaluations.
Following Auger and Hansen [4] we define the success performance FE for a solver on a specific
problem by:

FE = evalmean · #all runs(30)

#successful runs
(12)

Where evalmean is the mean number of function evaluations of all successful runs. As a successful
run only those are considered, that obtained the best known global solution. With this defini-
tion the best success performance FEbest is given for every problem by the lowest value of FE
respectively to all considered solvers. Figure 2 shows the empirical distribution function of the
success performance FE divided by FEbest on the respective test problem. Every line represents
the performance of a specific solver, every step indicates that a problem was solved to the global
optimal solution at least once out of the 30 test runs.
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Figure 2: Performance profile for MITS, the MISQP multistart and the ACOmi setups for the
MINLP benchmark problems

Note that the performance profile shown in Figure 2 is a drastic simplification of the detailed results
shown in Table 7, as only test runs that delivered the global optimal solution have an impact on
the success performance FE. Clearly the best solver for this set of benchmark problems is MITS,
directly followed by the MISQP multistart. Both were able to deliver global optimal solution for
every problem of the set, but MITS was more robust and slightly faster in most cases. The fact,
that the MISQP multistart was capable to achieve global optimal solutions in all cases within a
highly competitive number of function evaluations in comparison to the global solver MITS, proves
the strength of this local solver. As MISQP is essentially embedded in MITS, the results obtained
by MITS on this set must be seen under the aspect of this hybridization.

Taking into account the strength of MISQP on this set of problems, it is not very surprising, that
the ACOmi setup exploiting the local solver most was the best one among the three setups. ACOmi2

was able to obtain global optimal solutions for every problem. Except for two problems (van de
braak 2, floudas 4) the performance of ACOmi2 according to the robustness and speed are even
highly competitive to those of MITS or the MISQP multistart. Obviously the worst ACOmi setup
for this set of problems was ACOmi1 which did not benefit of the local solver at all. As this setup
represents the here proposed extended ACO framework and oracle penalty method, a closer look
on the results is necessary. Even so ACOmi1 was able to find the global optimal solution in only
58% of the problems, only for three problems (floudas 1, windfac, batch) no feasible solution could
be found at all. Among the problems ACOmi1 succeeded in finding feasible solutions but not global
ones, the solutions are often still good (e.g. gear, nvs20, duran/grossmann 2, floudas 2, floudas 4).

Assuming the third ACOmi setup ACOmi3, performing a pure ACO search and calling MISQP only
one time at the very end, the quality of the solutions provided by ACOmi1 become more evident.
Except for one problem (floudas 4) the pure ACO search provided solutions that were close enough
to the global optimum, that the local solver succeeded in obtaining the global solution. In other
words, even if the pure ACO search by ACOmi1 did not succeed in achieving the global solution
with the claimed precision in the given budget of function evaluations, it acted as a sufficiently
good starting point for the local solver to obtain the global optimal solution.
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6.2 Thermal insulation system application

In this section we describe the application of ACOmi on a load-bearing thermal insulation system.
The corresponding model files (’Heat Shield Problem Files’) to this application were obtained from
Abramson [2]. The thermal insulation system is characterized by hot and cold surfaces with a series
of heat intercepts and insulators between them. It is assumed that the insulators act as a mechanical
support, a system with such a property is called load-bearing. The aim of the optimization is to
minimize the required power (P), which is needed to maintain a stable temperature for the surfaces
and intercepts used within the system. Details on the thermal insulation system can be found in
Abramson [1].

While in Abramson [1] the optimization problem was stated as a mixed variable problem (MVP)
with a variable number of intercepts, here we have selected a MINLP formulation with a fixed
number of intercepts. Based on the solution provided in Abramson [2] the number of intersections
was fixed to eleven. Consequently our MINLP formulation consists of 20 continuous and 11 integer
decision variables, plus 2 nonlinear inequality constraints. Regarding the lower and upper bounds
for the continuous variables, the solution values provided in Abramson [2] were used once again as a
reference. We assumed bounds of 50 percent around those values for the real variables. Regarding
the integer variables, every integer represents an insulator material used in an intercept, and 7
different types of materials were considered in Abramson [1], so these integer variables have a
range from 1 to 7, with the materials being nylon, teflon, epoxy normal, epoxy plane, aluminum,
carbon-steel and steel.

To illustrate the multimodality, and therefore the complexity of this problem, a frequency histogram
for the feasible solutions found by a multistart execution of the local solver MISQP with 100 random
initial points is shown in Figure 6.2.1. Out of this 100 runs of MISQP, 54 did not converge to a
feasible solution. Of the 46 runs that converged to a feasible solution, the best objective function
value found was 141.35 (P). In total, the multistart procedure required 58325 objective function
evaluations. Note, that for the sake of comparison an evaluation limited MISQP multistart with
random initial points is considered beneath in addition to this multistart with a fixed number of
100 MISQP executions.
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Figure 3: Frequency histogram of feasible solutions for the ’Heat Shield Problem’ found by a
multistart of MISQP with 100 random initial points (only solutions with an objective function
value lower than 1000 are displayed)
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Once again we compare the performance of the three ACOmi setups (see Table 3) with the one of
MITS and an evaluation limited multistart of MISQP with random initial points, like in Section
6.1. The default settings of ACOmi (see Table 2) are used. A maximal budget of 10000 function
evaluations was set for every solver and 30 test runs have been performed. Again a precision
of 10−4 regarding the l1 Norm of all constraint violations and the objective function value was
claimed. As the Heatshield problem contains two inequality constraints, ACOmi uses the robust
oracle penalty method to evaluate the fitness of ants. The oracle parameter is chosen accordingly
to the update rule described in Section 4.2 throughout the test runs.

In addition to our own obtained results by MITS, the MISQP multistart and ACOmi, two solutions
presented in Abramson [1] were taken as references: the NOMADm solution obtained by Abramson
[1], which is identical to the above mentioned reference solution provided by Abramson [2], and
another solution by Kokkolaras et al. [26]. While in Abramson [1] only normalized values of
the objective function were reported, we have focused on the original (not normalized) values
corresponding to the power (P). The normalization is done by a multiplication of the power with
the system-load (L) and a division by a cross-sectional area (A). Using these normalized values, the
NOMADm solution was 23.77 (PL

A
), and the Kokkolaras one 25.29 (PL

A
). Using the ’Heat Shield

Problem Files’ provided by Abramson [2] we obtained a not normalized NOMADm solution value
of 106.35 (P), which is consistent with the convergence curve performance of the pure power (P)
presented in Abramson [1].

The results obtained by MITS, the evaluation limited MISQP multistart and the ACOmi setups are
given in Table 8, where the best (fbest), worst (fworst) and mean (fmean) (feasible) objective function
value are reported. All 30 test runs of all solvers converged to feasible solutions. In addition the
mean number of function evaluations (evalmean) and the corresponding cpu-time (timemean) in
seconds is also reported for all solvers.

Table 8: Results for the Heatshield problem
solver feasible fbest fworst fmean evalmean timemean

ACOmi1 30 105.86 110.01 107 10051 206.03
ACOmi2 30 105.79 163.54 112.9 10370 331.54
ACOmi3 30 105.82 121.35 107.74 10375 216.61
MISQP 30 154.6 9427 581.91 10202 281.89
MITS 30 111.04 150.46 124.71 11037 518.52

In addition to Table 8, Table 9 gives detailed information on the best decision vectors x∗ obtained by
MITS and ACOmi (best solution obtained by setup ACOmi2). Also the above mentioned NOMADm
solution and the solution values (original and normalized) are given.
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Table 9: Best solution x∗ by NOMADm, MITS and ACOmi

solution information x∗
NOMADm x∗

MITS x∗
ACOmi2

continuous variables:
1 0.625 0.843 0.321
2 8.125 6.670 7.658
3 7.968 9.652 8.639
4 7.812 11.652 7.153
5 12.344 6.172 13.781
6 26.094 15.854 25.698
7 8.125 12.187 8.237
8 5.312 7.968 5.780
9 5.000 7.500 5.087
10 5.625 7.373 6.613
11 4.250 4.201 4.200
12 7.737 6.401 7.294
13 12.369 11.788 12.089
14 18.094 20.795 17.177
15 29.912 25.722 30.185
16 71.094 47.717 71.257
17 105.940 71.000 107.266
18 135.470 114.119 139.299
19 165.940 165.459 171.534
20 202.030 206.272 214.485
categorical variables:
1 Epoxy normal Carbon steel Nylon
2 Epoxy normal Epoxy normal Epoxy normal
3 Epoxy normal Epoxy normal Epoxy normal
4 Epoxy normal Epoxy normal Epoxy normal
5 Epoxy normal Epoxy normal Epoxy normal
6 Epoxy normal Epoxy normal Epoxy normal
7 Epoxy normal Epoxy normal Epoxy normal
8 Epoxy normal Epoxy normal Epoxy normal
9 Epoxy normal Epoxy normal Epoxy normal
10 Epoxy normal Epoxy normal Epoxy normal
11 Epoxy normal Epoxy normal Epoxy normal
solution value:
P (original) 106.355 111.043 105.787
PL
A

(normalized) 23.768 24.815 23.641

The convergence curves of all 30 test runs by MITS and the ACOmi1 setup are given in Figure 4.
Note that the plots uses double logarithmic scale.
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Figure 4: All 30 convergence curves of MISQP and ACOmi1 for the Heatschield problem

Analyzing the results of ACOmi on this application and comparing them with those of MITS and the
MISQP multistart, ACOmi was clearly outperforming both. In addition the best results by all three
ACOmi setups are slightly better than the best solution found by NOMADm (see Abramson [1]). It
is significant, that the mean objective function value of around 107 obtained by ACOmi1 and ACOmi3

is much better than the one obtained by ACOmi2, which is the ACOmi setup calling the local solver
after every generation. As the MISQP multistart achieved only a pure best objective function value
of 154.6 and a much worse mean value of 581.91, the use of this local solver for this application does
not seem promising. This is also assumed as an explanation why MITS performed significantly
worse than ACOmi on this application. It seems that the performance of MITS is heavily dependent
on the local solver MISQP. Bearing this in mind, the contrary performance of the tested solvers
on this application and the previous MINLP benchmark set becomes understandable.

7 Conclusions

We presented an extension of the Ant Colony Optimization metaheuristic enabling the methodology
to handle mixed integer variable search domains. Furthermore we introduced a new penalization
strategy which is applied in our extended ACO implementation ACOmi. Numerical tests of ACOmi on
a set of 26 MINLP benchmark problems and one engineering design problem have been performed
with a particular focus on the benefit of a local solver used within ACOmi. It turned out that on
the set of MINLP benchmark problems, where a multistart of the local solver MISQP was very
successful, the massive use of the hybridized local solver was most promising in ACOmi and delivered
inferior but competitive results to the concurrent MITS solver. Nevertheless the pure ACO search
was capable to deliver good solutions in most of the cases on this challenging benchmark problems.

The results obtained by ACOmi on the engineering design problem were outperforming those of
MITS, the MISQP multistart and even the two reported solutions in Abramson [1]. Furthermore
the pure ACO search in ACOmi was responsible for the robust success of ACOmi on this application.
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