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Abstract—This contribution introduces a mixed-integer ex-
tension to the well-known Cassini1 space mission benchmark
published by the European Space Agency (ESA). Due to it’s
highly nonlinear function properties, the Cassini1 benchmark
is widely recognized by the evolutionary computing community
as interesting test case. The Cassini1 benchmark implements a
simplified model of an interplanetary space trajectory from Earth
to Saturn, using four gravity-assist maneuvers (also known as
fly-by’s) at planets: Mercury, Mercury, Earth and Jupiter. Here
the original continuous formulation of the Cassini1 benchmark
is extended by four discrete (integer) variables, representing
the choice of fly-by planets. Comprehensive numerical results
investigate the complexity of this mixed-integer formulation and
compare it with the purely continuous formulation. The results
show that the difficulty to solve the mixed-integer formulation can
significantly vary depending on small modifications of the integer
search space. Preliminary multi-objective results are additionally
presented in order to deepen the understanding of the observed
mixed-integer performance.

Index Terms—MINLP, Ant Colony Optimization, MIDACO

I. INTRODUCTION

The design of interplanetary space flight trajectories remains
a challenging and active area for applying global optimization
algorithms. Since 2005 the Advanced Concept Team (ACT)
of the European Space Agency (ESA) publishes a database
of Global Trajectory Optimization (GTOP) benchmarks [6].
All GTOP benchmarks are originally formulated as single-
objective optimization problems. The easiest1 and most widely
used instance of the GTOP set is the Cassini1 benchmark
problem, which consist of six continuous decision variables
and four non-linear constraints (see [6] for details). This
contribution presents a mixed-integer extension to the original
formulation by adding four additional discrete (also called
integer or combinatorial) optimization variables. Those four
variables represent the sequence of fly-by planets, where each
of the nine1 planets of the solar system are a possible choice.

Figure 1 illustrates the original Cassini space probe tra-
jectory launched in 1997 by NASA. The original sequence
of fly-by planets was Venus (Apr-1998), Venus (Jun-1999),

1In contrast to Cassini1, the Messenger (full version) [13] benchmark is
considered to be the most difficult instance of the GTOP benchmark set.

1Pluto is considered the ninth-planet here.

Earth (Aug-1999) and Jupiter (Dec-2000). Those fly-by’s are
observable from Figure 1.

Fig. 1. Interplanetary trajectory of NASA’s Cassini Mission (1997)

Extending the original formulation by four discrete variables
exponentially increases the variable search space and allows
many more possible trajectories to be explored and evaluated.
Mixed-integer formulations of interplanetary trajectories are
known to be difficult to solve and remain a rare exception in
the literature on trajectory optimization, see e.g. [5], [8], [9]
[11] or [17] .

This contribution is focused on estimating and comparing
the complexity of the mixed-integer formulation with the
original purely continuous formulation. Extensive numerical
results with the MIDACO optimization software [11] are
presented for both formulations, revealing that the mixed-
integer formulation can be significantly more difficult to solve.
Furthermore, several local optimal mixed-integer solutions are
investigated individually; revealing a challenging complexity
of the objective search space with one particular strong and
decisive local optimum with planet sequence Earth-Earth-
Earth-Jupiter.

Additionally, preliminary numerical results for a multi-
objective mixed-integer formulation of Cassini1 are presented.
Those results enable a graphically illustration of the objective
space, which provides a deeper understanding of the nature
and complexity of the above mentioned mixed-integer local
optimal solutions.



A conclusion section finally summarizes the numerical
results and gives an outlook on further research.

II. MIXED-INTEGER EXTENSION FOR CASSINI1

This section briefly describes the details of the considered
mixed-integer extension of the Cassini1 benchmark. Table I
lists the total number of continuous variables, whereas the four
last variables (x7, x8, x9, x10) are of integer type and represent
the sequence of fly-by planets.

TABLE I
MIXED-INTEGER OPTIMIZATION VARIABLES

Variable Description Type
x1 Launch date (MJD) continuous

x2, x3, x4, x5, x6 Days between events continuous
x7, x8, x9, x10 flu-by planet sequence discrete

Table II list all nine planets with their corresponding integer
value, that is used as discrete input variable for the mixed-
integer formulation.

TABLE II
POSSIBLE CHOICE OF fly-by PLANETS

Value Planet
1 Mercury
2 Venus
3 Earth
4 Mars
5 Jupiter
6 Saturn
7 Uranus
8 Neptune
9 Pluto

The technical modification in the source code of the GTOP
database, necessary to enable the integer choice of fly-by
planets, is given in the file trajobjfunc.cpp . In such
file, the following original source code line:

sequence_[CASSINI_DIM] = {3,2,2,3,5,6}

is replaced with the following:

sequence_[CASSINI_DIM] = {3,x7,x8,x9,x10,6}

Whereas the sequence elements x7,x8,x9,x10 represent the
integer variables. Note that the first and last entry in the above
source code sequence represent the start and target planet,
which is in this case Earth (→ start) and Saturn (→ target).
Therefore the first and last entry in the original sequence
remain unaffected by the above modification.

III. MIDACO ALGORITHM

This section gives a brief introduction into the underlying
mixed integer optimization algorithm implemented in the
MIDACO optimization software [11]. MIDACO is based on
an evolutionary computing method known as Ant Colony
Optimization (ACO), see e.g. [4], [1] or [7]. ACO is a heuristic

method that aims to approximate good and potential global
optimal solutions to problems that are formulated as black-
box problem, thus no white-box (inside) knowledge of the
optimization problem is required to apply ACO.

For mixed integer search domains, MIDACO uses an ACO
extension described in full detail in [9]. This ACO extension
differs in the way the ACO algorithm samples it’s iterates
(also called ants). While in case of continuous variables a
continuous multi-kernel Gauss probability density distribution
(PDF) is applied (see Figure 2), a discretized version is used
for the integer search space (see Figure 3).

Fig. 2. Continuous multi-kernel PDF used within ACO algorithm

Fig. 3. Discretized multi-kernel PDF used within ACO algorithm

A comprehensive numerical study on the effectiveness of
MIDACO on 200 mixed-integer benchmark problems can
be found in [12], showing that the algorithm is capable to
solve the majority of benchmarks to their global solution in
reasonable time.

The MIDACO algorithm has further been extensively tested
on interplanetary space trajectory design problems [11] and
holds several record solutions on the GTOP database, includ-
ing the best known solution to the Messenger (full version)
instance [13], which is considered the most difficult instance
of the database.



IV. NUMERICAL RESULTS

This section presents numerical results on the mixed-integer
extended version of the Cassini1 benchmark [6]. This section
is divided into two subsections, the first one considers Cassini1
as single-objective problem while the second one considers
multiple objectives. The MIDACO version 6.0 optimization
software [11] was used to solve the optimization problem.
All numerical experiments where conducted on an Intel(R)
Xeon(R) CPU E5-2650L v3 @ 1.80GHz

A. Single-Objective Mixed-Integer Results

This section presents numerical results on a single-objective
formulation of the mixed-integer extended Cassini1 bench-
mark. The first goal of this section is to identify the individual
best global optimal solutions corresponding to different planet
sequences, of which there are 94 = 6561 possible combinations
in total. The second goal of this section is to compare the
numerical complexity to solve the continuous (denoted as
NLP) formulation with the mixed-integer (denoted as MINLP)
formulation.

In order to explore the mixed-integer search space and iden-
tify the ten best global solutions for different planet sequences,
the MIDACO optimization software was applied repeatedly
for a fixed CPU time budget of 10,000 seconds (roughly 3
hours) on the mixed-integer formulation, whereas all integer
sequences from previous found best known solutions where
excluded as feasible solution from any further runs. As a result,
Table III lists the different planet sequences for the ten best
known solutions together with their corresponding objective
function value (∆V ). Note that the original planet sequence
(2,2,3,5) appears as the fourth best solution, corresponding to
the well known optimum of ∆V = 4.9307. The fact that three
solutions with different planet sequence and better objective
value were identified is likely due to the highly simplified
model of the Cassini1 benchmark.

TABLE III
BEST 10 INTEGER COMBINATIONS OUT OF 94 = 6561 POSSIBLE

∆V Solutions Fly-Bye Planet Sequence

3.5007 3 (Earth) 2 (Venus) 3 (Earth) 5 (Jupiter)
3.6307 3 (Earth) 3 (Earth) 3 (Earth) 5 (Jupiter)
4.7556 3 (Earth) 3 (Earth) 3 (Earth) 6 (Saturn)

4.9307 2 (Venus) 2 (Venus) 3 (Earth) 5 (Jupiter)

5.0177 3 (Earth) 3 (Earth) 2 (Venus) 5 (Jupiter)
5.1631 3 (Earth) 2 (Venus) 2 (Venus) 5 (Jupiter)
6.9289 3 (Earth) 2 (Venus) 2 (Venus) 6 (Saturn)
6.2201 3 (Earth) 2 (Venus) 3 (Earth) 6 (Saturn)
7.7364 2 (Venus) 2 (Venus) 3 (Earth) 6 (Saturn)

In the further proceeding of this section, we will focus
only on the first four best solutions, from which the original
sequence (2,2,3,5) holds the worst objective function value

(∆V = 4.9307) in comparison. Table IV lists the full solution
values for the four best identified integer sequences. Note
that all solutions significantly differ from each other in the
continuous variables. In regard to the integer sequence, those
four solutions agree only in such regard, that the 3rd fly-by
planet of the sequence is Earth.

TABLE IV
BEST 4 INDIVIDUAL SOLUTIONS WITH DIFFERENT SEQUENCE

∆V : 3.5007 3.6307 4.7556 4.9307

x1 : -768.507 -836.986 -825.243 -789.766
x2 : 350.595 207.913 171.311 158.316
x3 : 234.191 192.809 235.345 449.385
x4 : 55.791 258.400 250.770 54.709
x5 : 1012.700 910.784 1999.999 1024.763
x6 : 4533.926 4405.162 5505.540 4552.914

x7 : 3 (Earth) 3 (Earth) 3 (Earth) 2 (Venus)
x8 : 2 (Venus) 3 (Earth) 3 (Earth) 2 (Venus)
x9 : 3 (Earth) 3 (Earth) 3 (Earth) 3 (Earth)
x10 : 5 (Jupiter) 5 (Jupiter) 6 (Saturn) 5 (Jupiter)

In order to estimate the complexity of the mixed-integer
formulation of the Cassini1 benchmark, a comprehensive study
of the purely continuous NLP case is conducted first. This is
done by fixing the planet sequence for the best four cases (see
Table IV), thus creating four different instances of a purely
continuous formulation. Table V shows the numerical results
of 30 independent test runs with MIDACO on each of such
four instances. Table V lists the best, worst and mean number
of required function evaluation and corresponding CPU-time,
to reach the individual best solution with a precision of 0.1%1.

TABLE V
COMPUTATIONAL EFFORT TO SOLVE FIRST FOUR NLP SETUPS

Evaluation CPU time
Seq. Best Worst Mean Best Worst Mean

3 3 3 5 21697 1328566 156479 0.4 22.2 2.7
3 2 3 5 648852 10099233 3881197 11.8 179.2 70.3
3 3 3 6 1142548 83280823 10322225 18.8 1465.2 182.4
2 2 3 5 326003 2723492 1318044 5.4 44.8 21.8

From Table V it is interesting to see that the complexity
of the continuous formulation may drastically vary due to
the considered planet sequence. The planet sequence (3,3,3,6)
creates apparently the most difficult instance, requiring 182.4
seconds on average to be solved. In contrast, the sequence
(3,3,3,5) creates apparently the easiest instance, requiring only
2.7 seconds on average to be solved. The original sequence
(2,2,3,5) appears moderately easy, with 21.8 seconds on aver-
age to be solved.

As a next step, the mixed-integer formulation is considered.
Here, four different MINLP scenarios are created, which only
differ in such sense, that for some instances, some sequences

1The official precision by the GTOP database is 0.1% for any new solution
to be included into the database.



are artificially made infeasible (by using an additional con-
straint). This is done in order to investigate in detail the
MINLP cases corresponding to the four best sequences and
later on compare their complexity with the continuous NLP
cases. The following MINLP scenarios are considered:

Scenario A: all sequences are feasible
Scenario B: only sequence (3,2,3,5) is infeasible
Scenario C: only sequence (3,3,3,5) is infeasible
Scenario D: sequence (3,3,3,5) and (3,2,3,5) are infeasible
Scenario E: sequence (3,3,3,5),(3,2,3,5),(3,3,3,6) are infeasible

Table VII lists the best, worst and mean number of required
function evaluation and corresponding CPU-time, to reach the
individual best solution with a precision of 0.1%. A maximal
CPU time budget of 10,000 seconds (∼ 3 hours) was applied
to each individual test run. Table VI shows the success rate
for each of the five MINLP scenarios. It is important to
note that for the scenario A special behavior is observed:
For scenario A the MIDACO algorithm quickly converges
to the second best integer sequence of (3,3,3,5) in all test
runs, rather than to converging to the apparent global optimal
solution with sequence (3,2,3,5). Therefore the success rate
in reaching the global optimal solution is zero for scenario
A. This observation indicates that reaching the global MINLP
solution with sequence (3,2,3,5) is significantly more difficult
than anticipated. The following Subsection IV-B will further
investigate this issue and give an explanation for this behavior.

TABLE VI
SUCCESS RATE FOR FOUR MINLP SCENARIOS

Scenario Success Rate
A 0% (0 out of 30)
B 100% (30 out of 30)
C 70% (21 out of 30)
D 97% (29 out of 30)
E 57% (17 out of 30)

TABLE VII
COMPUTATIONAL EFFORT TO SOLVE FIRST FOUR MINLP SCENARIOS

Evaluation CPU time
Scen. Best Worst Mean Best Worst Mean

A - - 174020318 - - 10000.0
B 203015 4628160 1134541 5.5 127.5 31.3
C 1583665 268086109 173999158 42.1 10000.0 4770.9
D 2050148 381254507 32770441 53.9 10000.0 925.9
E 4246664 371809630 172397996 114.9 10000.0 4834.7

From Table VII it can be seen that the complexity of the
five considered MINLP instances drastically varies. While the
scenario B MINLP is solved within 31.3 seconds on average,
the scenarios C and E require on average well over an hour
to be solved. This different complexity is also reflected in
the success rate, which is very high with 100% and 97% for
scenarios B and D, while scenario C and E had a success rate
of only 70% and 57% respectively.

With the data from Table V and Table VII it is now possible
to compare the complexity of the four considered NLP and

MINLP scenarios. Table VIII shows the estimated complexity
difference between the varying NLP and MINLP scenarios,
whereas the ”>” symbol means ”more than” and the ”>>”
means ”significantly more than”. The estimation is based
on comparing the best, worst and mean number of function
evaluation between the NLP and the MINLP cases.

For example: In case of scenario D (which corresponds
to a best known sequence of (3,3,3,6)) the mean number of
NLP evaluation where 10322225 and the mean number of
MINLP evaluation was 32770441 (with a success rate of 97%).
Therefore the mean complexity difference for scenario D is
calculated as 32770441

10322225 ≈ 3.17 and denoted as > 3.17, because
the success rate was just 97% rather than 100% for the MINLP
case.

TABLE VIII
COMPLEXITY COMPARISON BETWEEN NLP AND MINLP SETUPS

Scenario Sequence Best Worst Mean
A (3,2,3,5) ∞ ∞ ∞
B (3,3,3,5) 9.35 3.48 7.25
C (3,2,3,5) 2.4 >> 116.55 >> 65.21
D (3,3,3,6) 1.79 > 4.57 > 3.17
E (2,2,3,5) 13.02 >> 136.51 >> 130.79

From Table VIII it can be seen that the complexity can
significantly vary between the different considered scenarios,
being as low as > 3.17 and 7.25 for scenario B and D. It
can be seen that scenario C and E have a significantly higher
complexity with >> 65.21 and >> 130.79 respectively.
Scenario A represents the highest possible complexity gain
with ”∞”, because the MINLP version of scenario A was
never solved to its global optimum (see Table VII) in any of
the conducted test runs in this study.



B. Multi-Objective Mixed-Integer Results

This section presents some preliminary numerical results for
a multi-objective mixed-integer formulation of the Cassini1
benchmark. The mixed-integer extension considered in this
section is identical to those described in Section II. The multi-
objective extension is described in [14]. Two multi-objective
scenarios are considered here: The first one assumes only two
objectives, which are the total ∆V as first objective f1(x) and
the total flight time as second objective f2(x). The second one
assumes four objectives which are listed in Table IX.

TABLE IX
DESCRIPTION OF FOUR OBJECTIVES FOR CASSINI1

Objective Description Unit
f1(x) Total ∆V (including ∆V∞) km/sec
f2(x) Time of Flight Days
f3(x) Launch Date MJD2000
f4(x) Launch ∆V∞ km/sec

Purpose of this section is to create a detailed visual mapping
of the objective space in regard to the MINLP scenarios
described in Section Section IV-A. Such mapping should
then be investigated in order to better understand the varying
complexity of the MINLP scenarios (see Table VIII) and
particularly the complexity of scenario A, which had a zero
success rate to reach the global optimum (see Table VI).

The MIDACO optimization software has been applied with
a fixed CPU-time budget of 24 hours on each of the four
MINLP scenarios B, C, D and E for the two multi-objective
scenarios. Therefore the computational resources for the re-
sults in this section required eight days in total. However, note
that these results are not primarily concerned with optimization
performance, but with creating a most complete mapping of
the objective space, which is a notoriously intensive task for
hard problems.

Figure 4 shows the results for the two-objective case with
a first objective function value below 6.0. Figure 5 displays
a close-up view on the most interesting part of Figure 4,
which is an intersection of the pareto front corresponding to
the fly-by planet sequence of (3,2,3,5) with the pareto front
corresponding to the sequence of (3,3,3,5).

As hoped, the results displayed in Figure 4 and Figure 5
do indeed give an indication why the MINLP scenario A is
so much harder to solve than any of the other considered
MINLP scenarios. This can be observed by the pareto fronts
corresponding to the solutions with sequence (3,2,3,5) (colored
grey) and sequence (3,3,3,5) (colored orange). As it can be
seen from Figure 4 the orange pareto front is positioned
well ”below” the grey pareto front for the most part, where
”below” refers here to the position regarding both: the x-
axis (expressing the first objective, total ∆V ) and the y-
axis (expressing the second objective, flight time). Only for
solutions with a flight time above 5500 days, the grey pareto
front holds a better first objective value, than the orange pareto

Fig. 4. Two-Objective Space for solutions with f1(x) < 6

Fig. 5. Two-Objective Space for solutions with f1(x) < 3.9

front. This critical part is displayed as close up in Figure 5,
where the intersection between the grey and orange pareto
front is well observable. The global optimum to the MINLP
scenario A is located at the extremal point of the grey pareto
front.

Because the orange pareto front significantly dominates the
grey pareto front for the most part (in especially for any
flight time below 5500 days), it becomes apparent why the
optimization algorithm, when applied on the MINLP scenario
A (which allows all possible sequences as feasible) gets
attracted much quicker to a solution with sequence (3,3,3,5)
rather than (3,2,3,5). In other words: The objective space
mapping indicates that solutions with sequence (3,3,3,5) pose a
very decisive sub-optimum in MINLP scenario A case, leading
the optimization algorithm to the second best solution (which
has an f1(x) = 3.6307) rather than to the global optimum of
f1(x) = 3.507.



The observed behavior of pareto fronts for the two-objective
case is now further investigated under the four-objective sce-
nario. Figure 6 shows the results for the four-objective case
with a first objective function value below 30.0. Figure 7
displays a close-up view of Figure 6 of solutions with a first
objective function value below 6.0.

Fig. 6. Four-Objective Space for solutions with f1(x) < 30

Fig. 7. Four-Objective Space for solutions with f1(x) < 6

Again, it can be seen from Figure 6 that the orange
pareto front dominates the grey pareto front on nearly the
entire objective space, here displayed for solution with a first
objective value below f1(x) = 30.0. Only for the tiny fraction
of solutions with a flight time above 5500 days, this behavior
breaks. Furthermore, from the close-up view displayed in

Figure 7 it can be seen that the density of the orange pareto
front is somewhat higher than the grey pareto front for the
relevant solutions with a first objective function value below
4.0. This difference in the density indicates that those solutions
are easier to achieve, which further adds to the decisiveness
of sequence (3,3,3,5) in the MINLP scenario A.

Overall it can be concluded, that the multi-objective mixed-
integer results gave a graphical insight on why the most
general MINLP scenario for the Cassini1 benchmark had a
success rate of zero to be solved to the global optimum.
The findings indicate the most general MINLP scenario holds
a very decisive sub-optimum which corresponds to the se-
quence (3,3,3,5) (orange pareto front) and which will lead the
optimization algorithm (quickly) to the second best known
solution (f1(x) = 36307) rather than to the best known
(f1(x) = 3.507). This behavior further explains, why the
MINLP scenario B was solved with a 100% success rate in
much quicker time than any other considered scenario (see
Table VII).

This large difference in the complexity of the best and
second best fly-by planet sequence makes the general mixed-
integer Cassini1 benchmark a true challenge.



V. CONCLUSIONS

A mixed-integer (MINLP) extension for the well-known
continuous (NLP) Cassini1 benchmark problem was intro-
duced. Comprehensive numerical results investigated the effort
to solve several scenarios of the mixed-integer formulation and
contrasted them to the complexity of the original continuous
formulation. The three main findings are:

• The general MINLP formulation (denoted as scenario
A in Section IV-A) of Cassini1 remains yet intractable
and therefore appears to be even more difficult
than the hardest continuous instance from the entire
GTOP database, which is the Messenger (full version)
benchmark. The difficulty of this particular MINLP
instance appears to arise from a very decisive local
optimum, which prevents the optimization algorithm
from reaching the global optimal integer sequence (see
discussion in Section IV-B).

• The MINLP formulation of Cassini1 becomes tractable
by modifying the problem in such way that an additional
artificial constraint excludes a single or few integer
sequences from the search space. This appears to be
a simple but effective strategy to solve the MINLP
nonetheless.

• The varying MINLP instances (denoted as scenario
B, C, D and E) exhibit a wide range of complexity.
Compared to its continuous NLP counterparts, such
MINLP formulations add a complexity that ranges from
approximately just three times (scenario D, see Table
VIII) to well above 130 times (scenario E, see Table
VIII) on average.

Overall it can be concluded that the mixed-integer formula-
tion of interplanetary space trajectory design problems remains
a difficult optimization task and provides a challenge for
years to come. Furthermore, the multi-objective mixed-integer
formulation of such applications has been approached with
preliminary numerical results, which offered a deeper insight
into the reasons for the complexity regarding the mixed-integer
aspect.
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APPENDIX

Here the individual best known (and likely global) optimal
solutions for the first four integer sequences are displayed.
Each Table lists the individual objective function values
f1,...,4(x), the constraint function values g1,...,4(x) and the
continuous decision variable values x1,...,4 in numerical high
precision. Additionally, a Bounds-Profil is included for the de-
cision variables, which illustrate the location of the individual
decision variable regarding its lower and upper bound limits.
Note that each solution differs significantly from each other.

TABLE X
SOLUTION FOR INTEGER SEQUENCE (3,2,3,5)

f1(x) = 3.500728185527975
f2(x) = 6187.206159009762814
f3(x) = -768.507162880275246
f4(x) = 0.000694840431001

g1(x) = 426.30012744
g2(x) = 0.00863652
g3(x) = 0.07658503
g4(x) = 198483.82577383

Bounds-Profil
x1 = -768.507162880275246 —-x—————-
x2 = 350.595125230118811 ——————x–
x3 = 234.191923967256514 ——-x————-
x4 = 55.791488954165523 -x——————-
x5 = 1012.700812895418380 ——–x————
x6 = 4533.926807962803650 ————–x——

TABLE XI
SOLUTION FOR INTEGER SEQUENCE (3,3,3,5)

f1(x) = 3.630781777451420
f2(x) = 5975.069902670555166
f3(x) = -836.986643071973731
f4(x) = 0.000786281657129

g1(x) = 0.167E+10
g2(x) = 0.119E+11
g3(x) = 0.00005353
g4(x) = 1025954.35092890

Bounds-Profil
x1 = -836.986643071973731 —x—————–
x2 = 207.913267357936888 ————–x——
x3 = 192.809629637231779 x——————–
x4 = 258.400175641384408 ————x——–
x5 = 910.784034067405287 ——x————–
x6 = 4405.162795966596605 ————–x——

TABLE XII
SOLUTION FOR INTEGER SEQUENCE (3,3,3,6)

f1(x) = 4.755632436714976
f2(x) = 8162.967666962844305
f3(x) = -825.243506159569279
f4(x) = 0.000944397039300

g1(x) = 0.204E+10
g2(x) = 0.251E+11
g3(x) = 0.00021720
g4(x) = 143943.43791531

Bounds-Profil
x1 = -825.243506159569279 ——x————–
x2 = 171.311984098048015 x——————–
x3 = 235.345067209642110 ——–x————
x4 = 250.770721904264974 ————x——–
x5 = 1999.999846004226356 ——————–x
x6 = 5505.540047746662822 ——————x–

TABLE XIII
SOLUTION FOR INTEGER SEQUENCE (3,3,3,6)

f1(x) = 4.930708003226642
f2(x) = 6240.090241737491851
f3(x) = -789.766698392527246
f4(x) = 2.754600375736785

g1(x) = 0.00004152
g2(x) = 2514.34670590
g3(x) = 0.00006172
g4(x) = 161293.47750763

Bounds-Profil
x1 = -789.766698392527246 —-x—————-
x2 = 158.316489688202438 ——-x————-
x3 = 449.385882385110790 ——————-x-
x4 = 54.709580747134851 -x——————-
x5 = 1024.763444786727177 ——–x————
x6 = 4552.914844130316851 ————–x——


	Introduction
	Mixed-Integer Extension for Cassini1
	MIDACO Algorithm
	Numerical Results
	Single-Objective Mixed-Integer Results
	Multi-Objective Mixed-Integer Results

	Conclusions
	References

