CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC C C This is an example call of MIDACO 6.0 C ------------------------------------- C C MIDACO solves Multi-Objective Mixed-Integer Non-Linear Problems: C C C Minimize F_1(X),... F_O(X) where X(1,...N-NI) is CONTINUOUS C and X(N-NI+1,...N) is DISCRETE C C subject to G_j(X) = 0 (j=1,...ME) equality constraints C G_j(X) >= 0 (j=ME+1,...M) inequality constraints C C and bounds XL <= X <= XU C C C The problem statement of this example is given below. You can use C this example as template to run your own problem. To do so: Replace C the objective functions 'F' (and in case the constraints 'G') given C here with your own problem and follow the below instruction steps. C CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC CCCCCCCCCCCCCCCCCCCCCCCCC MAIN PROGRAM CCCCCCCCCCCCCCCCCCCCCCCCCCCCC CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC PROGRAM MAIN IMPLICIT NONE CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC C Dimensions of the optimization problem INTEGER O, N, NI, M, ME C Lower and upper bounds ('XL' & 'XU') and optimization variable 'X' DOUBLE PRECISION XL(1000), XU(1000), X(1000) C Objectives 'F(X)' and constraints 'G(X)' DOUBLE PRECISION F(10), G(1000) C MIDACO information and stop flags INTEGER IFLAG, ISTOP C MIDACO parameter DOUBLE PRECISION PARAM(13) C MIDACO integer 'IW' and real'RW' workspace and pareto front 'PF' INTEGER LIW, LRW, LPF PARAMETER (LIW = 50000, LRW = 50000, LPF = 50000) INTEGER IW(LIW) DOUBLE PRECISION RW(LRW),PF(LPF) C Parameter for stopping criteria, printing and license INTEGER MAXTIME, MAXEVAL, PRINTEVAL, SAVE2FILE, I CHARACTER*60 KEY KEY='************************************************************' CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC CCC Step 1: Problem definition CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC C C Step 1.A : Problem dimensions C CCCCCCCCCCCCCCCCCCCCCCCCCCCCC O = 1 ! Number of objectives N = 36 ! Number of variables (in total) NI = 27 ! Number of integer variables (0 <= NI <= N) M = 21 ! Number of constraints (in total) ME = 9 ! Number of equality constraints (0 <= ME <= M) C C Step 1.B : Lower and upper bounds: 'XL' and 'XU' C CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC DO I = 1,9 XL(I) = 0.0D0 XU(I) = 1000.0d0 - dble(i)*100.0d0 ENDDO DO I = 10,36 XL(I) = 0.0D0 XU(I) = 10.0d0 ENDDO C C Step 1.C : Starting point 'X' C CCCCCCCCCCCCCCCCCCCCCCCCCCCCC DO I = 1,N X(I) = XL(I) ! Here for example: starting point = lower bounds ENDDO CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC CCC Step 2: Choose stopping criteria and printing options CCCCCCCCCCC CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC C C Step 2.A : Stopping criteria C CCCCCCCCCCCCCCCCCCCCCCCCCCCC MAXEVAL = 999999999 ! Maximum evaluation budget (e.g. 1000000) MAXTIME = 60*60*24 ! Maximum time limit (e.g. 60*60*24 = 1 Day) C C Step 2.B : Printing options C CCCCCCCCCCCCCCCCCCCCCCCCCCC PRINTEVAL = 10000 ! Print-Frequency for current best solution (e.g. 1000) SAVE2FILE = 1 ! Save SCREEN and SOLUTION to TXT-files [0=NO/1=YES] CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC CCC Step 3: Choose MIDACO parameters (FOR ADVANCED USERS) CCCCCCCCCCC CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC PARAM( 1) = 0.0D0 ! ACCURACY PARAM( 2) = 6.0D0 ! SEED PARAM( 3) = -3408.38D0 ! FSTOP PARAM( 4) = 0.0D0 ! ALGOSTOP PARAM( 5) = 0.0D0 ! EVALSTOP PARAM( 6) = 0.0D0 ! FOCUS PARAM( 7) = 0.0D0 ! ANTS PARAM( 8) = 0.0D0 ! KERNEL PARAM( 9) = 0.0D0 ! ORACLE PARAM(10) = 0.0D0 ! PARETOMAX PARAM(11) = 0.0D0 ! EPSILON PARAM(12) = 0.0D0 ! BALANCE PARAM(13) = 0.0D0 ! CHARACTER CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC C C Call MIDACO by Reverse Communication C CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC C Print MIDACO headline with basic information CALL MIDACO_PRINT(1,PRINTEVAL,SAVE2FILE,IFLAG,ISTOP,F,G,X,XL, & XU,O,N,NI,M,ME,RW,PF,MAXEVAL,MAXTIME,PARAM,1,0,KEY) DO WHILE(ISTOP.EQ.0) !~~~Start~of~reverse~communication~loop C Evaluate Objective F(X) and constraints G(X) CALL PROBLEM_FUNCTION( F, G , X) C Call MIDACO CALL MIDACO(1,O,N,NI,M,ME,X,F,G,XL,XU,IFLAG, & ISTOP,PARAM,RW,LRW,IW,LIW,PF,LPF,KEY) C Call MIDACO printing routine CALL MIDACO_PRINT(2,PRINTEVAL,SAVE2FILE,IFLAG,ISTOP,F,G,X, & XL,XU,O,N,NI,M,ME,RW,PF,MAXEVAL,MAXTIME,PARAM,1,0,KEY) ENDDO !~~~~~~~~~~~~~~~~~~~~End~of~reverse~communication~loop CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC ! PRINT*," Solution F(1) = ", F(1) ! PRINT*," Solution G(1) = ", G(1) ! PRINT*," Solution X(1) = ", X(1) CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC END CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC CCCCCCCCCCCCCCCCCCCCCCCCCCCC END OF MAIN CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC CCCCCCCCCCCCCCCCCCCCCC OPTIMIZATION PROBLEM CCCCCCCCCCCCCCCCCCCCCCCC CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC SUBROUTINE PROBLEM_FUNCTION(F,G,X) CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC IMPLICIT NONE CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC DOUBLE PRECISION F(*),G(*),X(*),cd(3),q,aj,bj,y(27),sum integer ms, nbin, ncont, i, j CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC C Rename Variables do i=1,27 y(i) = x(9+i) enddo C Prepare Data nbin = 27 ncont = 9 cd(1) = 50.0d0 cd(2) = 10.0d0 cd(3) = 5.0d0 q = 1500.0d0 ms = 3!nbin/ncont CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC C Objective function value f(1) = 0.0d0 do i=1,ncont f(1) = f(1) - x(i) enddo C Equality constraints G(i) = 0 do j=1,ncont sum = 0.0d0 do i=1,ms sum = sum + y((j-1)*ms+i) enddo g(j) = sum - 1.0d0 enddo C Inequality constraints G(i) >= 0 do j=1,ncont sum = 0.0d0 do i=1,ms sum = sum + cd(i)*y((j-1)*ms+i) enddo aj = 100.0d0 - dble(j)*10.0d0 bj = (1.0d0 - aj)/(1000.0d0 - dble(j)*100.0d0) g(ncont+j) = (aj + bj*x(j) - sum)/aj enddo do i=1,ms sum = 0.0d0 do j=1,ncont sum = sum + x(j)*y((j-1)*ms+i) enddo g(2*ncont+i) = (q - sum)/q enddo END CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC CCCCCCCCCCCCCCCCCCCCCCCCCCCC END OF FILE CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC